95 research outputs found
Recommended from our members
First-in-Man Phase I Trial of the Selective MET Inhibitor Tepotinib in Patients with Advanced Solid Tumors.
PurposeTepotinib is an oral, potent, highly selective MET inhibitor. This first-in-man phase I trial investigated the MTD of tepotinib to determine the recommended phase II dose (RP2D).Patients and methodsPatients received tepotinib orally according to one of three dose escalation regimens (R) on a 21-day cycle: R1, 30-400 mg once daily for 14 days; R2, 30-315 mg once daily 3 times/week; or R3, 300-1,400 mg once daily. After two cycles, treatment could continue in patients with stable disease until disease progression or unacceptable toxicity. The primary endpoint was incidence of dose-limiting toxicity (DLT) and treatment-emergent adverse events (TEAE). Secondary endpoints included safety, tolerability, pharmacokinetics, pharmacodynamics, and antitumor effects.ResultsOne hundred and forty-nine patients received tepotinib (R1: n = 42; R2: n = 45; R3: n = 62). Although six patients reported DLTs [one patient in R1 (115 mg), three patients in R2 (60, 100, 130 mg), two patients in R3 (1,000, 1,400 mg)], the MTD was not reached at the highest tested dose of 1,400 mg daily. The RP2D of tepotinib was established as 500 mg once daily, supported by translational modeling data as sufficient to achieve ≥95% MET inhibition in ≥90% of patients. Treatment-related TEAEs were mostly grade 1 or 2 fatigue, peripheral edema, decreased appetite, nausea, vomiting, and lipase increase. The best overall response in R3 was partial response in two patients, both with MET overexpression.ConclusionsTepotinib was well tolerated with clinical activity in MET-dysregulated tumors. The RP2D of tepotinib was established as 500 mg once daily. MET abnormalities can drive tumorigenesis. This first-in-man trial demonstrated that the potent, highly selective MET inhibitor tepotinib can reduce or stabilize tumor burden and is well tolerated at doses up to 1,400 mg once daily. An RP2D of 500 mg once daily, as determined from translational modeling and simulation integrating human population pharmacokinetic and pharmacodynamic data in tumor biopsies, is being used in ongoing clinical trials
Space Solar Cell Research and Development Projects at Emcore Photovoltaics
The GaInP2/InGaAs/Ge triple junction device lattice matched to germanium has achieved the highest power conversion efficiency and the most commercial success for space applications [1]. What are the practical performance limits of this technology? In this paper we will describe what we consider to be the practical performance limits of the lattice matched GaInP2/InGaAs/Ge triple junction cell. In addition, we discuss the options for next generation space cell performance
Phenoloxidase activity acts as a mosquito innate immune response against infection with semliki forest virus
Several components of the mosquito immune system including the RNA interference (RNAi), JAK/STAT, Toll and IMD pathways have previously been implicated in controlling arbovirus infections. In contrast, the role of the phenoloxidase (PO) cascade in mosquito antiviral immunity is unknown. Here we show that conditioned medium from the Aedes albopictus-derived U4.4 cell line contains a functional PO cascade, which is activated by the bacterium Escherichia coli and the arbovirus Semliki Forest virus (SFV) (Togaviridae; Alphavirus). Production of recombinant SFV expressing the PO cascade inhibitor Egf1.0 blocked PO activity in U4.4 cell- conditioned medium, which resulted in enhanced spread of SFV. Infection of adult female Aedes aegypti by feeding mosquitoes a bloodmeal containing Egf1.0-expressing SFV increased virus replication and mosquito mortality. Collectively, these results suggest the PO cascade of mosquitoes plays an important role in immune defence against arboviruses
A Genome-Wide Screen for Promoter Methylation in Lung Cancer Identifies Novel Methylation Markers for Multiple Malignancies
BACKGROUND: Promoter hypermethylation coupled with loss of heterozygosity at the same locus results in loss of gene function in many tumor cells. The “rules” governing which genes are methylated during the pathogenesis of individual cancers, how specific methylation profiles are initially established, or what determines tumor type-specific methylation are unknown. However, DNA methylation markers that are highly specific and sensitive for common tumors would be useful for the early detection of cancer, and those required for the malignant phenotype would identify pathways important as therapeutic targets. METHODS AND FINDINGS: In an effort to identify new cancer-specific methylation markers, we employed a high-throughput global expression profiling approach in lung cancer cells. We identified 132 genes that have 5′ CpG islands, are induced from undetectable levels by 5-aza-2′-deoxycytidine in multiple non-small cell lung cancer cell lines, and are expressed in immortalized human bronchial epithelial cells. As expected, these genes were also expressed in normal lung, but often not in companion primary lung cancers. Methylation analysis of a subset (45/132) of these promoter regions in primary lung cancer (n = 20) and adjacent nonmalignant tissue (n = 20) showed that 31 genes had acquired methylation in the tumors, but did not show methylation in normal lung or peripheral blood cells. We studied the eight most frequently and specifically methylated genes from our lung cancer dataset in breast cancer (n = 37), colon cancer (n = 24), and prostate cancer (n = 24) along with counterpart nonmalignant tissues. We found that seven loci were frequently methylated in both breast and lung cancers, with four showing extensive methylation in all four epithelial tumors. CONCLUSIONS: By using a systematic biological screen we identified multiple genes that are methylated with high penetrance in primary lung, breast, colon, and prostate cancers. The cross-tumor methylation pattern we observed for these novel markers suggests that we have identified a partial promoter hypermethylation signature for these common malignancies. These data suggest that while tumors in different tissues vary substantially with respect to gene expression, there may be commonalities in their promoter methylation profiles that represent targets for early detection screening or therapeutic intervention
Recommended from our members
Genome-wide association study of Tourette Syndrome
Tourette Syndrome (TS) is a developmental disorder that has one of the highest familial recurrence rates among neuropsychiatric diseases with complex inheritance. However, the identification of definitive TS susceptibility genes remains elusive. Here, we report the first genome-wide association study (GWAS) of TS in 1285 cases and 4964 ancestry-matched controls of European ancestry, including two European-derived population isolates, Ashkenazi Jews from North America and Israel, and French Canadians from Quebec, Canada. In a primary meta-analysis of GWAS data from these European ancestry samples, no markers achieved a genome-wide threshold of significance (p<5 × 10−8); the top signal was found in rs7868992 on chromosome 9q32 within COL27A1 (p=1.85 × 10−6). A secondary analysis including an additional 211 cases and 285 controls from two closely-related Latin-American population isolates from the Central Valley of Costa Rica and Antioquia, Colombia also identified rs7868992 as the top signal (p=3.6 × 10−7 for the combined sample of 1496 cases and 5249 controls following imputation with 1000 Genomes data). This study lays the groundwork for the eventual identification of common TS susceptibility variants in larger cohorts and helps to provide a more complete understanding of the full genetic architecture of this disorder
Cortical Mechanics and Meiosis II Completion in Mammalian Oocytes Are Mediated by Myosin-II and Ezrin-Radixin-Moesin (ERM) Proteins
Analysis of mouse oocyte mechanics shows that effective tension drops 6-fold from prophase I to metaphase II; the metaphase II egg has a 2.5-fold tension differential between the cortex over the spindle and the opposite cortex. Manipulation of actin, myosin-II, or ERMs alters tension levels and induces spindle abnormalities during meiosis II
The Science Performance of JWST as Characterized in Commissioning
This paper characterizes the actual science performance of the James Webb
Space Telescope (JWST), as determined from the six month commissioning period.
We summarize the performance of the spacecraft, telescope, science instruments,
and ground system, with an emphasis on differences from pre-launch
expectations. Commissioning has made clear that JWST is fully capable of
achieving the discoveries for which it was built. Moreover, almost across the
board, the science performance of JWST is better than expected; in most cases,
JWST will go deeper faster than expected. The telescope and instrument suite
have demonstrated the sensitivity, stability, image quality, and spectral range
that are necessary to transform our understanding of the cosmos through
observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures;
https://iopscience.iop.org/article/10.1088/1538-3873/acb29
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
Partitioning the Heritability of Tourette Syndrome and Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture
The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained
- …