124 research outputs found

    A Geometric Proof of Calibration

    Get PDF
    We provide yet another proof of the existence of calibrated forecasters; it has two merits. First, it is valid for an arbitrary finite number of outcomes. Second, it is short and simple and it follows from a direct application of Blackwell's approachability theorem to carefully chosen vector-valued payoff function and convex target set. Our proof captures the essence of existing proofs based on approachability (e.g., the proof by Foster, 1999 in case of binary outcomes) and highlights the intrinsic connection between approachability and calibration

    Do countries falsify economic data strategically? Some evidence that they might.

    Get PDF
    Using Benford's Law, we find evidence supporting the hypothesis that countries at times misreport their economic data strategically. We group countries with similar economic conditions and find that for countries with fixed exchange rate regimes, high negative net foreign asset positions, negative current account balances or more vulnerable to capital flow reversals we reject the first-digit law for the balance of payments data. This corroborates the intuition of a simple economic model. The main results do not seem to be driven by countries in Sub-Saharan Africa or those with low institutional quality ratings.capital flows; public information provision; misinformation; Benford's Law; transparency

    Robust approachability and regret minimization in games with partial monitoring

    Get PDF
    Approachability has become a standard tool in analyzing earning algorithms in the adversarial online learning setup. We develop a variant of approachability for games where there is ambiguity in the obtained reward that belongs to a set, rather than being a single vector. Using this variant we tackle the problem of approachability in games with partial monitoring and develop simple and efficient algorithms (i.e., with constant per-step complexity) for this setup. We finally consider external regret and internal regret in repeated games with partial monitoring and derive regret-minimizing strategies based on approachability theory

    Improved Second-Order Bounds for Prediction with Expert Advice

    Full text link
    This work studies external regret in sequential prediction games with both positive and negative payoffs. External regret measures the difference between the payoff obtained by the forecasting strategy and the payoff of the best action. In this setting, we derive new and sharper regret bounds for the well-known exponentially weighted average forecaster and for a new forecaster with a different multiplicative update rule. Our analysis has two main advantages: first, no preliminary knowledge about the payoff sequence is needed, not even its range; second, our bounds are expressed in terms of sums of squared payoffs, replacing larger first-order quantities appearing in previous bounds. In addition, our most refined bounds have the natural and desirable property of being stable under rescalings and general translations of the payoff sequence

    Pure Exploration for Multi-Armed Bandit Problems

    Get PDF
    We consider the framework of stochastic multi-armed bandit problems and study the possibilities and limitations of forecasters that perform an on-line exploration of the arms. These forecasters are assessed in terms of their simple regret, a regret notion that captures the fact that exploration is only constrained by the number of available rounds (not necessarily known in advance), in contrast to the case when the cumulative regret is considered and when exploitation needs to be performed at the same time. We believe that this performance criterion is suited to situations when the cost of pulling an arm is expressed in terms of resources rather than rewards. We discuss the links between the simple and the cumulative regret. One of the main results in the case of a finite number of arms is a general lower bound on the simple regret of a forecaster in terms of its cumulative regret: the smaller the latter, the larger the former. Keeping this result in mind, we then exhibit upper bounds on the simple regret of some forecasters. The paper ends with a study devoted to continuous-armed bandit problems; we show that the simple regret can be minimized with respect to a family of probability distributions if and only if the cumulative regret can be minimized for it. Based on this equivalence, we are able to prove that the separable metric spaces are exactly the metric spaces on which these regrets can be minimized with respect to the family of all probability distributions with continuous mean-payoff functions

    Strategies for prediction under imperfect monitoring

    Full text link
    We propose simple randomized strategies for sequential prediction under imperfect monitoring, that is, when the forecaster does not have access to the past outcomes but rather to a feedback signal. The proposed strategies are consistent in the sense that they achieve, asymptotically, the best possible average reward. It was Rustichini (1999) who first proved the existence of such consistent predictors. The forecasters presented here offer the first constructive proof of consistency. Moreover, the proposed algorithms are computationally efficient. We also establish upper bounds for the rates of convergence. In the case of deterministic feedback, these rates are optimal up to logarithmic terms.Comment: Journal version of a COLT conference pape

    Approachability in unknown games: Online learning meets multi-objective optimization

    Full text link
    In the standard setting of approachability there are two players and a target set. The players play repeatedly a known vector-valued game where the first player wants to have the average vector-valued payoff converge to the target set which the other player tries to exclude it from this set. We revisit this setting in the spirit of online learning and do not assume that the first player knows the game structure: she receives an arbitrary vector-valued reward vector at every round. She wishes to approach the smallest ("best") possible set given the observed average payoffs in hindsight. This extension of the standard setting has implications even when the original target set is not approachable and when it is not obvious which expansion of it should be approached instead. We show that it is impossible, in general, to approach the best target set in hindsight and propose achievable though ambitious alternative goals. We further propose a concrete strategy to approach these goals. Our method does not require projection onto a target set and amounts to switching between scalar regret minimization algorithms that are performed in episodes. Applications to global cost minimization and to approachability under sample path constraints are considered

    Online Multi-task Learning with Hard Constraints

    Get PDF
    We discuss multi-task online learning when a decision maker has to deal simultaneously with M tasks. The tasks are related, which is modeled by imposing that the M-tuple of actions taken by the decision maker needs to satisfy certain constraints. We give natural examples of such restrictions and then discuss a general class of tractable constraints, for which we introduce computationally efficient ways of selecting actions, essentially by reducing to an on-line shortest path problem. We briefly discuss "tracking" and "bandit" versions of the problem and extend the model in various ways, including non-additive global losses and uncountably infinite sets of tasks

    A Second-order Bound with Excess Losses

    Get PDF
    We study online aggregation of the predictions of experts, and first show new second-order regret bounds in the standard setting, which are obtained via a version of the Prod algorithm (and also a version of the polynomially weighted average algorithm) with multiple learning rates. These bounds are in terms of excess losses, the differences between the instantaneous losses suffered by the algorithm and the ones of a given expert. We then demonstrate the interest of these bounds in the context of experts that report their confidences as a number in the interval [0,1] using a generic reduction to the standard setting. We conclude by two other applications in the standard setting, which improve the known bounds in case of small excess losses and show a bounded regret against i.i.d. sequences of losses

    Contextual Bandits with Knapsacks for a Conversion Model

    Full text link
    We consider contextual bandits with knapsacks, with an underlying structure between rewards generated and cost vectors suffered. We do so motivated by sales with commercial discounts. At each round, given the stochastic i.i.d.\ context xt\mathbf{x}_t and the arm picked ata_t (corresponding, e.g., to a discount level), a customer conversion may be obtained, in which case a reward r(a,xt)r(a,\mathbf{x}_t) is gained and vector costs c(at,xt)c(a_t,\mathbf{x}_t) are suffered (corresponding, e.g., to losses of earnings). Otherwise, in the absence of a conversion, the reward and costs are null. The reward and costs achieved are thus coupled through the binary variable measuring conversion or the absence thereof. This underlying structure between rewards and costs is different from the linear structures considered by Agrawal and Devanur [2016] (but we show that the techniques introduced in the present article may also be applied to the case of these linear structures). The adaptive policies exhibited solve at each round a linear program based on upper-confidence estimates of the probabilities of conversion given aa and x\mathbf{x}. This kind of policy is most natural and achieves a regret bound of the typical order (OPT/BB) T\sqrt{T}, where BB is the total budget allowed, OPT is the optimal expected reward achievable by a static policy, and TT is the number of rounds.Comment: Thirty-sixth Conference on Neural Information Processing Systems, 2022, New Orleans, United State
    corecore