17,232 research outputs found

    Aerodynamic design optimisation for complex geometries using unstructured grids

    Get PDF
    These lecture notes, prepared for the 1997 VKI Lecture Course on Inverse Design, discuss the use of unstructured grid CFD methods in the design of complex aeronautical geometries. The emphasis is on gradient-based optimisation approaches. The evaluation of approximate and exact linear sensitivities is described, as are different ways of formulating the adjoint equations to greatly reduce the computational cost when dealing with large numbers of design parameters. \ud \ud The current state-of-the-art is illustrated by two examples from turbomachinery and aircraft design

    Ordinary Hours by Karen Enns and Lake of Two Mountains by Arleen Paré

    Get PDF
    A \u27double\u27 review of two new poetry publications from Brick Books: Ordinary Hours by Karen Enns and Lake of Two Mountains by Arleen Pare

    Sharp error estimates for a discretisation of the 1D convection/diffusion equation with Dirac initial data

    Get PDF
    This paper derives sharp l∞\infty and l1 estimates of the error arising from an explicit approximation of the constant coefficient 1D convection/diffusion equation with Dirac initial data. The analysis embeds the discrete equations within a semi-discrete system of equations which can be solved by Fourier analysis. The error estimates are then obtained through asymptotic approximation of the integrals resulting from the inverse Fourier transform. this research is motivated by the desire to prove convergence of approximations to adjoint partial differential equations

    Monte Carlo evaluation of sensitivities in computational finance

    Get PDF
    In computational finance, Monte Carlo simulation is used to compute the correct prices for financial options. More important, however, is the ability to compute the so-called "Greeks'', the first and second order derivatives of the prices with respect to input parameters such as the current asset price, interest rate and level of volatility.\ud \ud This paper discusses the three main approaches to computing Greeks: finite difference, likelihood ratio method (LRM) and pathwise sensitivity calculation. The last of these has an adjoint implementation with a computational cost which is independent of the number of first derivatives to be calculated. We explain how the practical development of adjoint codes is greatly assisted by using Algorithmic Differentiation, and in particular discuss the performance achieved by the FADBAD++ software package which is based on templates and operator overloading within C++.\ud \ud The pathwise approach is not applicable when the financial payoff function is not differentiable, and even when the payoff is differentiable, the use of scripting in real-world implementations means it can be very difficult in practice to evaluate the derivative of very complex financial products. A new idea is presented to address these limitations by combining the adjoint pathwise approach for the stochastic path evolution with LRM for the payoff evaluation

    An extended collection of matrix derivative results for forward and reverse mode automatic differentiation

    Get PDF
    This paper collects together a number of matrix derivative results which are very useful in forward and reverse mode algorithmic differentiation (AD). It highlights in particular the remarkable contribution of a 1948 paper by Dwyer and Macphail which derives the linear and adjoint sensitivities of a matrix product, inverse and determinant, and a number of related results motivated by applications in multivariate analysis in statistics.\ud \ud This is an extended version of a paper which will appear in the proceedings of AD2008, the 5th International Conference on Automatic Differentiation

    Adjoint recovery of superconvergent functionals from PDE approximations

    Get PDF
    Motivated by applications in computational fluid dynamics, a method is presented for obtaining estimates of integral functionals, such as lift or drag, that have twice the order of accuracy of the computed flow solution on which they are based. This is achieved through error analysis that uses an adjoint PDE to relate the local errors in approximating the flow solution to the corresponding global errors in the functional of interest. Numerical evaluation of the local residual error together with an approximate solution to the adjoint equations may thus be combined to produce a correction for the computed functional value that yields the desired improvement in accuracy. Numerical results are presented for the Poisson equation in one and two dimensions and for the nonlinear quasi-one-dimensional Euler equations. The theory is equally applicable to nonlinear equations in complex multi-dimensional domains and holds great promise for use in a range of engineering disciplines in which a few integral quantities are a key output of numerical approximations

    Classification accuracy comparison: hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority

    Get PDF
    The comparison of classification accuracy statements has generally been based upon tests of difference or inequality when other scenarios and approaches may be more appropriate. Procedures for evaluating two scenarios with interest focused on the similarity in accuracy values, non-inferiority and equivalence, are outlined following a discussion of tests of difference (inequality). It is also suggested that the confidence interval of the difference in classification accuracy may be used as well as or instead of conventional hypothesis testing to reveal more information about the disparity in the classification accuracy values compared

    Convergence analysis of Crank-Nicolson and Rannacher time-marching

    Get PDF
    This paper presents a convergence analysis of Crank-Nicolson and Rannacher time-marching methods which are often used in finite difference discretisations of the Black-Scholes equations. Particular attention is paid to the important role of Rannacher's startup procedure, in which one or more initial timesteps use Backward Euler timestepping, to achieve second order convergence for approximations of the first and second derivatives. Numerical results confirm the sharpness of the error analysis which is based on asymptotic analysis of the behaviour of the Fourier transform. The relevance to Black-Scholes applications is discussed in detail, with numerical results supporting recommendations on how to maximise the accuracy for a given computational cost

    Computing Greeks using multilevel path simulation

    Get PDF
    We investigate the extension of the multilevel Monte Carlo method [2, 3] to the calculation of Greeks. The pathwise sensitivity analysis [5] differentiates the path evolution and effectively reduces the smoothness of the payoff. This leads to new challenges: the use of naive algorithms is often impossible because of the inapplicability of pathwise sensitivities to discontinuous payoffs.\ud \ud These challenges can be addressed in three different ways: payoff smoothing using conditional expectations of the payoff before maturity [5]; an approximation of the above technique using path splitting for the final timestep [1]; the use of a hybrid combination of pathwise sensitivity and the Likelihood Ratio Method [4]. We discuss the strengths and weaknesses of these alternatives in different multilevel Monte Carlo settings
    • …
    corecore