35,720 research outputs found

    Poiseuille flow in a nanochannel – use of different thermostats

    Get PDF
    Poiseuille flow of a liquid in a nano-channel is simulated by molecular dynamics by embedding the fluid particles in a uniform force field. The channel is periodic in y and z directions and along x direction it is bounded by atomic walls. The imposition of the body force generates heat in the system leading to shear heating and a non-uniform temperature rise across the channel. In this nonequilibrium system, one can attempt to control temperature in different ways: velocity rescaling, thermostats or wall-fluid coupling. We evaluate and compare different methods critically by analyzing the fluctuations and time averaged quantities from various simulations. When particles will be inserted into the flow, it is expected that the dynamics will depend on the thermostat chosen. First observations show little influence of the thermostats on single tracer particles – this needs further study

    Quantisation of second class systems in the Batalin-Tyutin formalism

    Full text link
    We review the Batalin-Tyutin approach of quantising second class systems which consists in enlarging the phase space to convert such systems into first class. The quantisation of first class systems, it may be mentioned, is already well founded. We show how the usual analysis of Batalin-Tyutin may be generalised, particularly if one is dealing with nonabelian theories. In order to gain a deeper insight into the formalism we have considered two specific examples of second class theories-- the massive Maxwell theory (Proca model) and its nonabelian extension. The first class constraints and the involutive Hamiltonian are explicitly constructed. The connection of our Hamiltonian approach with the usual Lagrangian formalism is elucidated. For the Proca model we reveal the importance of a boundary term which plays a significant role in establishing an exact identification of the extra fields in the Batalin-Tyutin approach with the St\"uckelberg scalar. Some comments are also made concerning the corresponding identification in the nonabelian example.Comment: 26 pages, Latex file, e-mail [email protected] SINP-TNP/94-

    In-medium vector mesons and low mass lepton pairs from heavy ion collisions

    Full text link
    The rho and omega meson self-energy at finite temperature and baryon density have been analysed for an exhaustive set of mesonic and baryonic loops in the real time formulation of thermal field theory. The large enhancement of spectral strength below the nominal rho mass is seen to cause a substantial enhancement in dilepton pair yield in this mass region. The integrated yield after space-time evolution using relativistic hydrodynamics with quark gluon plasma in the initial state leads to a very good agreement with the experimental data from In-In collisions obtained by the NA60 collaboration.Comment: Invited Talk at the DAE-BRNS Workshop on Hadron Physics, Bhabha Atomic Research Centre, Mumbai, India, October 31-November 4, 201

    Non-spherical collapse of a two fluid star

    Full text link
    We obtain the analogue of collapsing Vaidya-like solution to include both a null fluid and a string fluid, with a linear equation of state (p=kρp_{\bot} = k \rho), in non-spherical (plane symmetric and cylindrically symmetric) anti-de Sitter space-timess. It turns out that the non-spherical collapse of two fluid in anti-de Sitter space-times, in accordance with cosmic censorship, proceed to form black holes, i.e., on naked singularity ever forms, violating hoop conjecture.Comment: 7 pages, RevTeX 4, minor correction

    A Parameterized Centrality Metric for Network Analysis

    Full text link
    A variety of metrics have been proposed to measure the relative importance of nodes in a network. One of these, alpha-centrality [Bonacich, 2001], measures the number of attenuated paths that exist between nodes. We introduce a normalized version of this metric and use it to study network structure, specifically, to rank nodes and find community structure of the network. Specifically, we extend the modularity-maximization method [Newman and Girvan, 2004] for community detection to use this metric as the measure of node connectivity. Normalized alpha-centrality is a powerful tool for network analysis, since it contains a tunable parameter that sets the length scale of interactions. By studying how rankings and discovered communities change when this parameter is varied allows us to identify locally and globally important nodes and structures. We apply the proposed method to several benchmark networks and show that it leads to better insight into network structure than alternative methods.Comment: 11 pages, submitted to Physical Review
    corecore