132 research outputs found
Trained Immunity Carried by Non-immune Cells
âTrained immunityâ is a term proposed by Netea to describe the ability of an organism to develop an exacerbated immunological response to protect against a second infection independent of the adaptative immunity. This immunological memory can last from 1 week to several months and is only described in innate immune cells such as monocytes, macrophages, and natural killer cells. Paradoxically, the lifespan of these cells in the blood is shorter than the duration of trained immunity. This observation suggested that trained immunity could be carried by long lifespan cells such as stem cells and non-immune cells like fibroblasts. It is now evident that in addition to performing their putative function in the development and maintenance of tissue homeostasis, non-immune cells also play an important role in the response to pathogens by producing anti-microbial factors, with long-term inflammation suggesting that non-immune cells can be trained to confer long-lasting immunological memory. This review provides a summary of the current relevant knowledge about the cells which possess immunological memory and discusses the possibility that non-immune cells may carry immunological memory and mechanisms that might be involved
Prognostic significance of vascular and valvular calcifications in low- and high-gradient aortic stenosis
International audienceAims In low-gradient aortic stenosis (LGAS), the high valvulo-arterial impedance observed despite low valvular gradient suggests a high vascular load. Thoracic aortic calcifications (TACs) and valvular aortic calcifications (VACs) are, respectively, surrogates of aortic load and aortic valvular gradient. The aim of this study was to compare the respective contributions of TAC and VAC on 3-year cardiovascular (CV) mortality following TAVI in LGAS vs. high-gradient aortic stenosis (HGAS) patients. Methods and results A total of 1396 consecutive patients were included. TAC and VAC were measured on the pre-TAVI CT-scan. About 435 (31.2%) patients had LGAS and 961 (68.8%) HGAS. LGAS patients were more prone to have diabetes, coronary artery disease (CAD), atrial fibrillation (AF), and lower left ventricular ejection fraction (LVEF), P<0.05 for all. During the 3âyears after TAVI, 245(17.8%) patients experienced CV mortality, 92(21.6%) in LGAS and 153(16.2%) in HGAS patients, P=0.018. Multivariate analysis adjusted for age, gender, diabetes, AF, CAD, LVEF, renal function, vascular access, and aortic regurgitation showed that TAC but not VAC was associated with CV mortality in LGAS, hazard ratio (HR) 1.085 confidence interval (CI) (1.019â1.156), P=0.011, and HR 0.713 CI (0.439â1.8), P=0.235; the opposite was observed in HGAS patients with VAC but not TAC being associated with CV mortality, HR 1.342 CI (1.034â1.742), P=0.027, and HR 1.015 CI (0.955â1.079), P=0.626. Conclusion TAC plays a major prognostic role in LGAS while VAC remains the key in HGAS patients. This confirms that LGAS is a complex vascular and valvular disease
Coxiella burnetii, the Agent of Q Fever, Replicates within Trophoblasts and Induces a Unique Transcriptional Response
Q fever is a zoonosis caused by Coxiella burnetii, an obligate intracellular bacterium typically found in myeloid cells. The infection is a source of severe obstetrical complications in humans and cattle and can undergo chronic evolution in a minority of pregnant women. Because C. burnetii is found in the placentas of aborted fetuses, we investigated the possibility that it could infect trophoblasts. Here, we show that C. burnetii infected and replicated in BeWo trophoblasts within phagolysosomes. Using pangenomic microarrays, we found that C. burnetii induced a specific transcriptomic program. This program was associated with the modulation of inflammatory responses that were shared with inflammatory agonists, such as TNF, and more specific responses involving genes related to pregnancy development, including EGR-1 and NDGR1. In addition, C. burnetii stimulated gene networks organized around the IL-6 and IL-13 pathways, which both modulate STAT3. Taken together, these results revealed that trophoblasts represent a protective niche for C. burnetii. The activation program induced by C. burnetii in trophoblasts may allow bacterial replication but seems unable to interfere with the development of normal pregnancy. Such pathophysiologocal processes should require the activation of immune placental cells associated with trophoblasts
Type I Interferon Induction Is Detrimental during Infection with the Whipple's Disease Bacterium, Tropheryma whipplei
Macrophages are the first line of defense against pathogens. Upon infection macrophages usually produce high levels of proinflammatory mediators. However, macrophages can undergo an alternate polarization leading to a permissive state. In assessing global macrophage responses to the bacterial agent of Whipple's disease, Tropheryma whipplei, we found that T. whipplei induced M2 macrophage polarization which was compatible with bacterial replication. Surprisingly, this M2 polarization of infected macrophages was associated with apoptosis induction and a functional type I interferon (IFN) response, through IRF3 activation and STAT1 phosphorylation. Using macrophages from mice deficient for the type I IFN receptor, we found that this type I IFN response was required for T. whipplei-induced macrophage apoptosis in a JNK-dependent manner and was associated with the intracellular replication of T. whipplei independently of JNK. This study underscores the role of macrophage polarization in host responses and highlights the detrimental role of type I IFN during T. whipplei infection
Organised Genome Dynamics in the Escherichia coli Species Results in Highly Diverse Adaptive Paths
The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re-) annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species), including seven that we sequenced to completion. Within the âŒ18,000 families of orthologous genes, we found âŒ2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genome's long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an organised genome
Orientia tsutsugamushi Stimulates an Original Gene Expression Program in Monocytes: Relationship with Gene Expression in Patients with Scrub Typhus
Orientia tsutsugamushi is the causal agent of scrub typhus, a public health problem in the Asia-Pacific region and a life-threatening disease. O. tsutsugamushi is an obligate intracellular bacterium that mainly infects endothelial cells. We demonstrated here that O. tsutsugamushi also replicated in monocytes isolated from healthy donors. In addition, O. tsutsugamushi altered the expression of more than 4,500 genes, as demonstrated by microarray analysis. The expression of type I interferon, interferon-stimulated genes and genes associated with the M1 polarization of macrophages was significantly upregulated. O. tsutsugamushi also induced the expression of apoptosis-related genes and promoted cell death in a small percentage of monocytes. Live organisms were indispensable to the type I interferon response and apoptosis and enhanced the expression of M1-associated cytokines. These data were related to the transcriptional changes detected in mononuclear cells isolated from patients with scrub typhus. Here, the microarray analyses revealed the upregulation of 613 genes, which included interferon-related genes, and some features of M1 polarization were observed in these patients, similar to what was observed in O. tsutsugamushi-stimulated monocytes in vitro. This is the first report demonstrating that monocytes are clearly polarized in vitro and ex vivo following exposure to O. tsutsugamushi. These results would improve our understanding of the pathogenesis of scrub typhus, during which interferon-mediated activation of monocytes and their subsequent polarization into an M1 phenotype appear critical. This study may give us a clue of new tools for the diagnosis of patients with scrub typhus
The Intensity of IUGR-Induced Transcriptome Deregulations Is Inversely Correlated with the Onset of Organ Function in a Rat Model
A low-protein diet applied during pregnancy in the rat results in intrauterine growth restricted (IUGR) fetuses. In humans, IUGR is associated with increased perinatal morbidity, higher incidence of neuro-developmental defects and increased risk of adult metabolic anomalies, such as diabetes and cardiovascular disease. Development and function of many organs are affected by environmental conditions such as those inducing fetal and early postnatal growth restriction. This phenomenon, termed âfetal programmingâ has been studied unconnectedly in some organs, but very few studies (if any) have investigated at the same time several organs, on a more comparative basis. However, it is quite probable that IUGR affects differentially most organ systems, with possible persistent changes in gene expression. In this study we address transcriptional alterations induced by IUGR in a multi-organ perspective, by systematic analysis of 20-days rat fetuses. We show that (1) expressional alterations are apparently stronger in organs functioning late in foetal or postnatal life than in organs that are functioning early (2) hierarchical classification of the deregulations put together kidney and placenta in one cluster, liver, lungs and heart in another; (3) the epigenetic machinery is set up especially in the placenta, while its alterations are rather mild in other organs; (4) the genes appear deregulated in chromosome clusters; (5) the altered expression cascades varies from organ to organ, with noticeably a very significant modification of the complement and coagulation cascades in the kidney; (6) we found a significant increase in TF binding site for HNF4 proteins specifically for liver genes that are down-regulated in IUGR, suggesting that this decrease is achieved through the action of HNF transcription factors, that are themselves transcriptionnally induced in the liver by IUGR (x 1.84 fold). Altogether, our study suggests that a combination of tissue-specific mechanisms contributes to bring about tissue-driven modifications of gene cascades. The question of these cascades being activated to adapt the organ to harsh environmental condition, or as an endpoint consequence is still raised
Towards a Processual Microbial Ontology
types: ArticleStandard microbial evolutionary ontology is organized according to a
nested hierarchy of entities at various levels of biological organization. It typically
detects and defines these entities in relation to the most stable aspects of evolutionary
processes, by identifying lineages evolving by a process of vertical inheritance
from an ancestral entity. However, recent advances in microbiology indicate
that such an ontology has important limitations. The various dynamics detected
within microbiological systems reveal that a focus on the most stable entities (or
features of entities) over time inevitably underestimates the extent and nature of
microbial diversity. These dynamics are not the outcome of the process of vertical
descent alone. Other processes, often involving causal interactions between entities
from distinct levels of biological organisation, or operating at different time scales,
are responsible not only for the destabilisation of pre-existing entities, but also for
the emergence and stabilisation of novel entities in the microbial world. In this
article we consider microbial entities as more or less stabilised functional wholes,
and sketch a network-based ontology that can represent a diverse set of processes
including, for example, as well as phylogenetic relations, interactions that stabilise
or destabilise the interacting entities, spatial relations, ecological connections, and
genetic exchanges. We use this pluralistic framework for evaluating (i) the existing
ontological assumptions in evolution (e.g. whether currently recognized entities are
adequate for understanding the causes of change and stabilisation in the microbial
world), and (ii) for identifying hidden ontological kinds, essentially invisible from
within a more limited perspective. We propose to recognize additional classes of
entities that provide new insights into the structure of the microbial world, namely ââprocessually equivalentââ entities, ââprocessually versatileââ entities, and ââstabilizedââ
entities.Economic and Social Research Council, U
Overview of the coordinated ground-based observations of Titan during the Huygens mission
Coordinated ground-based observations of Titan were performed around or during the Huygens atmospheric probe mission at Titan on 14 January 2005, connecting the momentary in situ observations by the probe with the synoptic coverage provided by continuing ground-based programs. These observations consisted of three different categories: (1) radio telescope tracking of the Huygens signal at 2040 MHz, (2) observations of the atmosphere and surface of Titan, and (3) attempts to observe radiation emitted during the Huygens Probe entry into Titan's atmosphere. The Probe radio signal was successfully acquired by a network of terrestrial telescopes, recovering a vertical profile of wind speed in Titan's atmosphere from 140 km altitude down to the surface. Ground-based observations brought new information on atmosphere and surface properties of the largest Satumian moon. No positive detection of phenomena associated with the Probe entry was reported. This paper reviews all these measurements and highlights the achieved results. The ground-based observations, both radio and optical, are of fundamental imnortance for the interpretatinn of results from the Huygens mission
The MAORY first-light adaptive optics module for E-ELT
The MAORY adaptive optics module is part of the first light instrumentation suite for the E-ELT. The MAORY project phase B is going to start soon. This paper contains a system-level overview of the current instrument design
- âŠ