38 research outputs found
Q-systems, Heaps, Paths and Cluster Positivity
We consider the cluster algebra associated to the -system for as a
tool for relating -system solutions to all possible sets of initial data. We
show that the conserved quantities of the -system are partition functions
for hard particles on particular target graphs with weights, which are
determined by the choice of initial data. This allows us to interpret the
simplest solutions of the Q-system as generating functions for Viennot's heaps
on these target graphs, and equivalently as generating functions of weighted
paths on suitable dual target graphs. The generating functions take the form of
finite continued fractions. In this setting, the cluster mutations correspond
to local rearrangements of the fractions which leave their final value
unchanged. Finally, the general solutions of the -system are interpreted as
partition functions for strongly non-intersecting families of lattice paths on
target lattices. This expresses all cluster variables as manifestly positive
Laurent polynomials of any initial data, thus proving the cluster positivity
conjecture for the -system. We also give an alternative formulation in
terms of domino tilings of deformed Aztec diamonds with defects.Comment: 106 pages, 38 figure
A class of Baker-Akhiezer arrangements
We study a class of arrangements of lines with multiplicities on the plane which admit the Chalykh–Veselov Baker–Akhiezer function. These arrangements are obtained by adding multiplicity one lines in an invariant way to any dihedral arrangement with invariant multiplicities. We describe all the Baker–Akhiezer arrangements when at most one line has multiplicity higher than 1. We study associated algebras of quasi-invariants which are isomorphic to the commutative algebras of quantum integrals for the generalized Calogero–Moser operators. We compute the Hilbert series of these algebras and we conclude that the algebras are Gorenstein. We also show that there are no other arrangements with Gorenstein algebras of quasi-invariants when at most one line has multiplicity bigger than 1
Discrete integrable systems, positivity, and continued fraction rearrangements
In this review article, we present a unified approach to solving discrete,
integrable, possibly non-commutative, dynamical systems, including the - and
-systems based on . The initial data of the systems are seen as cluster
variables in a suitable cluster algebra, and may evolve by local mutations. We
show that the solutions are always expressed as Laurent polynomials of the
initial data with non-negative integer coefficients. This is done by
reformulating the mutations of initial data as local rearrangements of
continued fractions generating some particular solutions, that preserve
manifest positivity. We also show how these techniques apply as well to
non-commutative settings.Comment: 24 pages, 2 figure
Quantum cohomology via vicious and osculating walkers
We relate the counting of rational curves intersecting Schubert varieties of the Grassmannian to the counting of certain non-intersecting lattice paths on the cylinder, so-called vicious and osculating walkers. These lattice paths form exactly solvable statistical mechanics models and are obtained from solutions to the Yang–Baxter equation. The eigenvectors of the transfer matrices of these models yield the idempotents of the Verlinde algebra of the gauged u^(n)k -WZNW model. The latter is known to be closely related to the small quantum cohomology ring of the Grassmannian. We establish further that the partition functions of the vicious and osculating walker model are given in terms of Postnikov’s toric Schur functions and can be interpreted as generating functions for Gromov–Witten invariants. We reveal an underlying quantum group structure in terms of Yang–Baxter algebras and use it to give a generating formula for toric Schur functions in terms of divided difference operators which appear in known representations of the nil-Hecke algebra
Symmetrized models of last passage percolation and non-intersecting lattice paths
It has been shown that the last passage time in certain symmetrized models of
directed percolation can be written in terms of averages over random matrices
from the classical groups , and . We present a theory of
such results based on non-intersecting lattice paths, and integration
techniques familiar from the theory of random matrices. Detailed derivations of
probabilities relating to two further symmetrizations are also given.Comment: 21 pages, 5 figure
Logarithmic and complex constant term identities
In recent work on the representation theory of vertex algebras related to the
Virasoro minimal models M(2,p), Adamovic and Milas discovered logarithmic
analogues of (special cases of) the famous Dyson and Morris constant term
identities. In this paper we show how the identities of Adamovic and Milas
arise naturally by differentiating as-yet-conjectural complex analogues of the
constant term identities of Dyson and Morris. We also discuss the existence of
complex and logarithmic constant term identities for arbitrary root systems,
and in particular prove complex and logarithmic constant term identities for
the root system G_2.Comment: 26 page
Multispecies virial expansions
We study the virial expansion of mixtures of countably many different types of particles. The main tool is the Lagrange–Good inversion formula, which has other applications such as counting coloured trees or studying probability generating functions in multi-type branching processes. We prove that the virial expansion converges absolutely in a domain of small densities. In addition, we establish that the virial coefficients can be expressed in terms of two-connected graphs
An Analytic Variational Study of the Mass Spectrum in 2+1 Dimensional SU(3) Hamiltonian Lattice Gauge Theory
We calculate the masses of the lowest lying eigenstates of improved SU(2) and
SU(3) lattice gauge theory in 2+1 dimensions using an analytic variational
approach. The ground state is approximated by a one plaquette trial state and
mass gaps are calculated in the symmetric and antisymmetric sectors by
minimising over a suitable basis of rectangular states
Two-loop self-dual Euler-Heisenberg Lagrangians (II): Imaginary part and Borel analysis
We analyze the structure of the imaginary part of the two-loop
Euler-Heisenberg QED effective Lagrangian for a constant self-dual background.
The novel feature of the two-loop result, compared to one-loop, is that the
prefactor of each exponential (instanton) term in the imaginary part has itself
an asymptotic expansion. We also perform a high-precision test of Borel
summation techniques applied to the weak-field expansion, and find that the
Borel dispersion relations reproduce the full prefactor of the leading
imaginary contribution.Comment: 28 pp, 6 eps figure