697 research outputs found
Recommended from our members
Human in vitro models for understanding mechanisms of autism spectrum disorder.
Early brain development is a critical epoch for the development of autism spectrum disorder (ASD). In vivo animal models have, until recently, been the principal tool used to study early brain development and the changes occurring in neurodevelopmental disorders such as ASD. In vitro models of brain development represent a significant advance in the field. Here, we review the main methods available to study human brain development in vitro and the applications of these models for studying ASD and other psychiatric disorders. We discuss the main findings from stem cell models to date focusing on cell cycle and proliferation, cell death, cell differentiation and maturation, and neuronal signaling and synaptic stimuli. To be able to generalize the results from these studies, we propose a framework of experimental design and power considerations for using in vitro models to study ASD. These include both technical issues such as reproducibility and power analysis and conceptual issues such as the brain region and cell types being modeled
Autism genetics: searching for specificity and convergence.
Advances in genetics and genomics have improved our understanding of autism spectrum disorders. As many genes have been implicated, we look to points of convergence among these genes across biological systems to better understand and treat these disorders
Autism: Many Genes, Common Pathways?
Autism is a heterogeneous neurodevelopmental syndrome with a complex genetic etiology. It is still not clear whether autism comprises a vast collection of different disorders akin to intellectual disability or a few disorders sharing common aberrant pathways. Unifying principles among cases of autism are likely to be at the level of brain circuitry in addition to molecular pathways
Recommended from our members
Gene expression in human brain implicates sexually dimorphic pathways in autism spectrum disorders.
Autism spectrum disorder (ASD) is more prevalent in males, and the mechanisms behind this sex-differential risk are not fully understood. Two competing, but not mutually exclusive, hypotheses are that ASD risk genes are sex-differentially regulated, or alternatively, that they interact with characteristic sexually dimorphic pathways. Here we characterized sexually dimorphic gene expression in multiple data sets from neurotypical adult and prenatal human neocortical tissue, and evaluated ASD risk genes for evidence of sex-biased expression. We find no evidence for systematic sex-differential expression of ASD risk genes. Instead, we observe that genes expressed at higher levels in males are significantly enriched for genes upregulated in post-mortem autistic brain, including astrocyte and microglia markers. This suggests that it is not sex-differential regulation of ASD risk genes, but rather naturally occurring sexually dimorphic processes, potentially including neuron-glial interactions, that modulate the impact of risk variants and contribute to the sex-skewed prevalence of ASD
Schizophrenia: Genome, Interrupted
Structural chromosomal variation is increasingly recognized as an important contributor to human diseases, particularly those of neurodevelopment, such as autism. A current paper makes a significant advance to schizophrenia genetics by establishing an association with rare copy number variants (CNV), which are over-represented in neurodevelopmental genes
The Autism Related Protein Contactin-Associated Protein-Like 2 (CNTNAP2) Stabilizes New Spines: An In Vivo Mouse Study.
The establishment and maintenance of neuronal circuits depends on tight regulation of synaptic contacts. We hypothesized that CNTNAP2, a protein associated with autism, would play a key role in this process. Indeed, we found that new dendritic spines in mice lacking CNTNAP2 were formed at normal rates, but failed to stabilize. Notably, rates of spine elimination were unaltered, suggesting a specific role for CNTNAP2 in stabilizing new synaptic circuitry
Replication of linkage at chromosome 20p13 and identification of suggestive sex-differential risk loci for autism spectrum disorder.
BackgroundAutism spectrum disorders (ASDs) are male-biased and genetically heterogeneous. While sequencing of sporadic cases has identified de novo risk variants, the heritable genetic contribution and mechanisms driving the male bias are less understood. Here, we aimed to identify familial and sex-differential risk loci in the largest available, uniformly ascertained, densely genotyped sample of multiplex ASD families from the Autism Genetics Resource Exchange (AGRE), and to compare results with earlier findings from AGRE.MethodsFrom a total sample of 1,008 multiplex families, we performed genome-wide, non-parametric linkage analysis in a discovery sample of 847 families, and separately on subsets of families with only male, affected children (male-only, MO) or with at least one female, affected child (female-containing, FC). Loci showing evidence for suggestive linkage (logarithm of odds ≥2.2) in this discovery sample, or in previous AGRE samples, were re-evaluated in an extension study utilizing all 1,008 available families. For regions with genome-wide significant linkage signal in the discovery stage, those families not included in the corresponding discovery sample were then evaluated for independent replication of linkage. Association testing of common single nucleotide polymorphisms (SNPs) was also performed within suggestive linkage regions.ResultsWe observed an independent replication of previously observed linkage at chromosome 20p13 (P < 0.01), while loci at 6q27 and 8q13.2 showed suggestive linkage in our extended sample. Suggestive sex-differential linkage was observed at 1p31.3 (MO), 8p21.2 (FC), and 8p12 (FC) in our discovery sample, and the MO signal at 1p31.3 was supported in our expanded sample. No sex-differential signals met replication criteria, and no common SNPs were significantly associated with ASD within any identified linkage regions.ConclusionsWith few exceptions, analyses of subsets of families from the AGRE cohort identify different risk loci, consistent with extreme locus heterogeneity in ASD. Large samples appear to yield more consistent results, and sex-stratified analyses facilitate the identification of sex-differential risk loci, suggesting that linkage analyses in large cohorts are useful for identifying heritable risk loci. Additional work, such as targeted re-sequencing, is needed to identify the specific variants within these loci that are responsible for increasing ASD risk
The Central Nervous System and the Gut Microbiome
Neurodevelopment is a complex process governed by both intrinsic and extrinsic signals. While historically studied by researching the brain, inputs from the periphery impact many neurological conditions. Indeed, emerging data suggest communication between the gut and the brain in anxiety, depression, cognition, and autism spectrum disorder (ASD). The development of a healthy, functional brain depends on key pre- and post-natal events that integrate environmental cues, such as molecular signals from the gut. These cues largely originate from the microbiome, the consortium of symbiotic bacteria that reside within all animals. Research over the past few years reveals that the gut microbiome plays a role in basic neurogenerative processes such as the formation of the blood-brain barrier, myelination, neurogenesis, and microglia maturation and also modulates many aspects of animal behavior. Herein, we discuss the biological intersection of neurodevelopment and the microbiome and explore the hypothesis that gut bacteria are integral contributors to development and function of the nervous system and to the balance between mental health and disease
- …