156 research outputs found
Interplay between ESR1/PIK3CA codon variants, oncogenic pathway alterations and clinical phenotype in patients with metastatic breast cancer (MBC): Comprehensive circulating tumor DNA (ctDNA) analysis
BACKGROUND: although being central for the biology and druggability of hormone-receptor positive, HER2 negative metastatic breast cancer (MBC), ESR1 and PIK3CA mutations are simplistically dichotomized as mutated or wild type in current clinical practice.
METHODS: The study analyzed a multi-institutional cohort comprising 703 patients with luminal-like MBC characterized for circulating tumor DNA through next generation sequencing (NGS). Pathway classification was defined based on previous work (i.e., RTK, RAS, RAF, MEK, NRF2, ER, WNT, MYC, P53, cell cycle, notch, PI3K). Single nucleotide variations (SNVs) were annotated for their oncogenicity through OncoKB. Only pathogenic variants were included in the models. Associations among clinical characteristics, pathway classification, and ESR1/PIK3CA codon variants were explored.
RESULTS: The results showed a differential pattern of associations for ESR1 and PIK3CA codon variants in terms of co-occurring pathway alterations patterns of metastatic dissemination, and prognosis. ESR1 537 was associated with SNVs in the ER and RAF pathways, CNVs in the MYC pathway and bone metastases, while ESR1 538 with SNVs in the cell cycle pathway and liver metastases. PIK3CA 1047 and 542 were associated with CNVs in the PI3K pathway and with bone metastases.
CONCLUSIONS: The study demonstrated how ESR1 and PIK3CA codon variants, together with alterations in specific oncogenic pathways, can differentially impact the biology and clinical phenotype of luminal-like MBC. As novel endocrine therapy agents such as selective estrogen receptor degraders (SERDS) and PI3K inhibitors are being developed, these results highlight the pivotal role of ctDNA NGS to describe tumor evolution and optimize clinical decision making
Circulating Tumor Cells Prediction in Hormone Receptor Positive HER2-Negative Advanced Breast Cancer: A Retrospective Analysis of the MONARCH 2 Trial
Background: The MONARCH 2 trial (NCT02107703) showed the efficacy of abemaciclib, a cyclin-dependent kinase 4 & 6 inhibitor (CDK4/6i), in combination with fulvestrant for hormone receptor-positive, HER2-negative metastatic breast cancer (MBC). The aim of this analysis was to explore the prediction of circulating tumor cells (CTCs) stratification using machine learning for hypothesis generation of biomarker-driven clinical trials. Patients and Methods: Predicted CTCs were computed in the MONARCH 2 trial through a K nearest neighbor (KNN) classifier trained on a dataset comprising 2436 patients with MBC. Patients were categorized into predicted Stage IVaggressive (pStage IVaggressive, ≥5 predicted CTCs) or predicted Stage IVindolent (pStage IVindolent, <5 predicted CTCs). Prognosis was tested in terms of progression-free-survival (PFS) and overall survival (OS) through Cox regression. Results: Patients classified as predicted pStage IVaggressive and predicted pStage Stage IVindolent were, respectively, 183 (28%) and 461 (72%). After multivariable Cox regression, predicted CTCs were confirmed as independently associated with prognosis in terms of OS, together with ECOG performance status, liver involvement, bone-only disease, and treatment arm. Patients in the pStage Stage IVindolent subgroup treated with abemaciclib experienced the best prognosis both in terms of PFS and OS. The treatment effect of abemaciclib on OS was then explored through subgroup analysis, showing a consistent benefit across all subgroups. Conclusion: This study is the first analysis of CTCs modeling for stage IV disease stratification. These results show the need to expand biomarker profiling in combination with CTCs stratification for improved biomarker-driven drug development
Plasma-Based Longitudinal Evaluation of ESR1 Epigenetic Status in Hormone Receptor-Positive HER2-Negative Metastatic Breast Cancer
Background: Endocrine therapy (ET) is the mainstay of treatment for hormone receptor-positive human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer; however, adaptive mechanisms emerge in about 25\u201330% of cases through alterations in the estrogen receptor ligand-binding domain, with a consequent ligand-independent estrogen receptor activity. Epigenetic-mediated events are less known and potentially involved in alternative mechanisms of resistance. The aim of this study was to test the feasibility of estrogen receptor 1 (ESR1) epigenetic characterization through liquid biopsy and to show its potential longitudinal application for an early ET sensitivity assessment. Methods: A cohort of 49 women with hormone receptor-positive HER2-negative MBC was prospectively enrolled and characterized through circulating tumor DNA using methylation-specific droplet digital PCR (MS-ddPCR) before treatment start (BL) and after 3 months concomitantly with computed tomography (CT) scan restaging (EV1). ESR1 epigenetic status was defined by assessing the methylation of its main promoters (promA and promB). The most established cell-free tumor DNA (ctDNA) factors associated with ET resistance [ESR1 and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) mutations] were assessed through next-generation sequencing. Associations were tested through Mann\u2013Whitney U test, matched pairs variations through Wilcoxon signed rank test, and survival was analyzed by log-rank test. Results: The ET backbone was mainly based on aromatase inhibitors (AIs) (70.83%) in association with CDK4/6 inhibitors (93.75%). Significantly lower promA levels at baseline were observed in patients with liver metastases (P = 0.0212) and in patients with ESR1 mutations (P = 0.0091). No significant impact on PFS was observed for promA (P = 0.3777) and promB (P = 0.7455) dichotomized at the median while a 652-fold increase in promB or in either promA or promB at EV1 resulted in a significantly worse prognosis (respectively P = 0.0189, P = 0.0294). A significant increase at EV1 was observed for promB among patients with PIK3CA mutation (P = 0.0173). A trend was observed for promB in ESR1 wild-type patients and for promA in the ESR1 mutant subgroup. Conclusion: The study proofed the concept of an epigenetic characterization strategy based on ctDNA and is capable of being integrated in the current clinical workflow to give useful insights on treatment sensitivity
An Integrated Pharmacological Counselling Approach to Guide Decision-Making in the Treatment with CDK4/6 Inhibitors for Metastatic Breast Cancer
A wide inter-individual variability in the therapeutic response to cyclin-dependent kinases 4 and 6 inhibitors (CDKis) has been reported. We herein present a case series of five patients treated with either palbociclib or ribociclib referred to our clinical pharmacological counselling, including therapeutic drug monitoring (TDM), pharmacogenetics, and drug–drug interaction analysis to support clinicians in the management of CDKis treatment for metastatic breast cancer. Patients’ plasma samples for TDM analysis were collected at steady state and analyzed by an LC-MS/MS method for minimum plasma concentration (Cmin) evaluation. Under and overexposure to the drug were defined based on the mean Cmin values observed in population pharmacokinetic studies. Polymorphisms in selected genes encoding for proteins involved in drug absorption, distribution, metabolism, and elimination were analyzed (CYP3A4, CYP3A5, ABCB1, SLCO1B1, and ABCG2). Three of the five reported cases presented a CDKi plasma level above the population mean value and were referred for toxicity. One of them presented a low function ABCB1 haplotype (ABCB1-rs1128503, rs1045642, and rs2032582), possibly causative of both increased drug oral absorption and plasmatic concentration. Two patients showed underexposure to CDKis, and one of them was referred for early progression. In one patient, a CYP3A5*1/*3 genotype was found to be potentially responsible for more efficient drug metabolism and lower drug plasma concentration. This intensified pharmacological approach in clinical practice has been shown to be potentially effective in supporting prescribing oncologists with dose and drug selection and could be ultimately useful for increasing both the safety and efficacy profiles of CDKi treatment
First- and second-line treatment strategies for hormone-receptor (HR)-positive HER2-negative metastatic breast cancer: A real-world study
Background: Endocrine therapy (ET) plus cyclin-dependent-kinases 4/6 inhibitors (CDK4/6i) represents the standard treatment for luminal-metastatic breast cancer (MBC). However, prospective head-to-head comparisons are still lacking for 1st line (L) options, and it is still crucial to define the best strategy between 1st and 2nd L. Materials and methods: 717 consecutive luminal-MBC pts treated between 2008 and 2020 were analyzed at the Oncology Department of Aviano and Udine, Italy. Differences about survival outcomes (OS, PFS and PPS) were tested by log-rank test. The attrition rate (AR) between 1st and 2ndL was calculated. Results: At 1stL, pts were treated with ET (49%), chemotherapy (CT) (31%) and ET-CDKi (20%) while, at 2ndL, 33% received ET, 33% CT and 8% ET-CDKi. Overall AR was 10%, 7% for CT, 8% for ET and 17% for ET-CDKi. By multivariate analysis, 1stL ET-CDK4/6i showed a better mPFS1 and OS. Moreover, 2ndL ET-CDK4/6i demonstrated better mPFS2 compared to ET and CT. Notably, 1stL ET-CDKi resulted in higher mPFS than 2ndL ET-CDKi. Intriguingly, 1stL ET-CDK4/6i was associated with worse mPPS compared to CT and ET. Secondarily, 1stL ET-CDK4/6i followed by CT had worse OS compared to 1stL ET-CDK4/6i followed by ET. Notably, none of baseline characteristics at 2ndL influenced 2ndL treatment choice (ET vs. CT) after ET-CDKi. Conclusion: Our real-world data demonstrated that ET-CDKi represents the best option for 1stL luminal-MBC compared to ET and CT. Also, the present study pointed out that 2ndL ET, potentially combined with other molecules, could be a feasible option after CDK4/6i failure, postponing CT on later lines
Longitudinal dynamics of circulating tumor cells and circulating tumor DNA for treatment monitoring in metastatic breast cancer
PURPOSE: Liquid biopsy-based biomarkers, including circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), are increasingly important for the characterization of metastatic breast cancer (MBC). The aim of the study was to explore CTCs and ctDNA dynamics to better understand their potentially complementary role in describing MBC. METHODS: The study retrospectively analyzed 107 patients with MBC characterized with paired CTCs and ctDNA assessments and a second prospective cohort, which enrolled 48 patients with MBC. CTCs were immunomagnetically isolated and ctDNA was quantified and then characterized through next-generation sequencing in the retrospective cohort and droplet digital polymerase chain reaction in the prospective cohort. Matched pairs variations at baseline, at evaluation one (EV1), and at progression were tested through the Wilcoxon test. The prognostic role of ctDNA parameters was also investigated. RESULTS: Mutant allele frequency (MAF) had a significant decrease between baseline and EV1 and a significant increase between EV1 and progression. Number of detected alterations steadily increased across timepoints, CTCs enumeration (nCTCs) significantly increased only between EV1 and progression. MAF dynamics across the main altered genes was then investigated. Plasma DNA yield did not vary across timepoints both in the retrospective cohort and in the prospective cohort, while the short fragments fraction showed a potential role as a prognostic biomarker. CONCLUSION: nCTCs and ctDNA provide complementary information about prognosis and treatment benefit. Although nCTCs appeared to assess tumor biology rather than tumor burden, MAF may be a promising biomarker for the dynamic assessment of treatment response and resistance
- …