825 research outputs found
Parallel ion strings in linear multipole traps
Additional radio-frequency (rf) potentials applied to linear multipole traps
create extra field nodes in the radial plane which allow one to confine single
ions, or strings of ions, in totally rf field-free regions. The number of nodes
depends on the order of the applied multipole potentials and their relative
distance can be easily tuned by the amplitude variation of the applied
voltages. Simulations using molecular dynamics show that strings of ions can be
laser cooled down to the Doppler limit in all directions of space. Once cooled,
organized systems can be moved with very limited heating, even if the cooling
process is turned off
About the dynamics and thermodynamics of trapped ions
This tutorial introduces the dynamics of charged particles in a
radiofrequency trap in a very general manner to point out the differences
between the dynamics in a quadrupole and in a multipole trap. When dense
samples are trapped, the dynamics is modified by the Coulomb repulsion between
ions. To take into account this repulsion, we propose to use a method,
originally developed for particles in Penning trap, that model the ion cloud as
a cold fluid. This method can not reproduce the organisation of cold clouds as
crystals but it allows one to scale the size of large samples with the trapping
parameters and the number of ions trapped, for different linear geometries of
trap.Comment: accepted for publication in the "Modern Applications of Trapped Ions"
special issu
Radiofrequency multipole traps: Tools for spectroscopy and dynamics of cold molecular ions
Multipole radiofrequency ion traps are a highly versatile tool to study
molecular ions and their interactions in a well-controllable environment. In
particular the cryogenic 22-pole ion trap configuration is used to study
ion-molecule reactions and complex molecular spectroscopy at temperatures
between few Kelvin and room temperatures. This article presents a tutorial on
radiofrequency ion trapping in multipole electrode configurations. Stable
trapping conditions and buffer gas cooling, as well as important heating
mechanisms, are discussed. In addition, selected experimental studies on cation
and anion-molecule reactions and on spectroscopy of trapped ions are reviewed.
Starting from these studies an outlook on the future of multipole ion trap
research is given
An ion ring in a linear multipole trap for optical frequency metrology
A ring crystal of ions trapped in a linear multipole trap is studied as a
basis for an optical frequency standard. The equilibrium conditions and cooling
possibilities are discussed through an analytical model and molecular dynamics
simulations. A configuration which reduces the frequency sensitivity to the
fluctuations of the number of trapped ions is proposed. The systematic shifts
for the electric quadrupole transition of calcium ions are evaluated for this
ring configuration. This study shows that a ring of 10 or 20 ions allows to
reach a short term stability better than for a single ion without introducing
limiting long term fluctuations
Observation of enhanced rate coefficients in the H + H H + H reaction at low collision energies
The energy dependence of the rate coefficient of the H reaction has been measured in the range of
collision energies between K and
mK. A clear deviation of the rate coefficient from the value expected on the
basis of the classical Langevin-capture behavior has been observed at collision
energies below K, which is attributed to the joint
effects of the ion-quadrupole and Coriolis interactions in collisions involving
ortho-H molecules in the rotational level, which make up 75% of the
population of the neutral H molecules in the experiments. The experimental
results are compared to very recent predictions by Dashevskaya, Litvin, Nikitin
and Troe (J. Chem. Phys., in press), with which they are in agreement.Comment: 14 pages, 3 figure
Falsification Of The Atmospheric CO2 Greenhouse Effects Within The Frame Of Physics
The atmospheric greenhouse effect, an idea that many authors trace back to
the traditional works of Fourier (1824), Tyndall (1861), and Arrhenius (1896),
and which is still supported in global climatology, essentially describes a
fictitious mechanism, in which a planetary atmosphere acts as a heat pump
driven by an environment that is radiatively interacting with but radiatively
equilibrated to the atmospheric system. According to the second law of
thermodynamics such a planetary machine can never exist. Nevertheless, in
almost all texts of global climatology and in a widespread secondary literature
it is taken for granted that such mechanism is real and stands on a firm
scientific foundation. In this paper the popular conjecture is analyzed and the
underlying physical principles are clarified. By showing that (a) there are no
common physical laws between the warming phenomenon in glass houses and the
fictitious atmospheric greenhouse effects, (b) there are no calculations to
determine an average surface temperature of a planet, (c) the frequently
mentioned difference of 33 degrees Celsius is a meaningless number calculated
wrongly, (d) the formulas of cavity radiation are used inappropriately, (e) the
assumption of a radiative balance is unphysical, (f) thermal conductivity and
friction must not be set to zero, the atmospheric greenhouse conjecture is
falsified.Comment: 115 pages, 32 figures, 13 tables (some typos corrected
Blackbody-radiation-assisted molecular laser cooling
The translational motion of molecular ions can be effectively cooled
sympathetically to temperatures below 100 mK in ion traps through Coulomb
interactions with laser-cooled atomic ions. The distribution of internal
rovibrational states, however, gets in thermal equilibrium with the typically
much higher temperature of the environment within tens of seconds. We consider
a concept for rotational cooling of such internally hot, but translationally
cold heteronuclear diatomic molecular ions. The scheme relies on a combination
of optical pumping from a few specific rotational levels into a ``dark state''
with redistribution of rotational populations mediated by blackbody radiation.Comment: 4 pages, 5 figure
Structural phase transitions in multipole traps
A small number of laser-cooled ions trapped in a linear radiofrequency
multipole trap forms a hollow tube structure. We have studied, by means of
molecular dynamics simulations, the structural transition from a double ring to
a single ring of ions. We show that the single-ring configuration has the
advantage to inhibit the thermal transfer from the rf-excited radial components
of the motion to the axial component, allowing to reach the Doppler limit
temperature along the direction of the trap axis. Once cooled in this
particular configuration, the ions experience an angular dependency of the
confinement if the local adiabaticity parameter exceeds the empirical limit.
Bunching of the ion structures can then be observed and an analytic expression
is proposed to take into account for this behaviour
Interstellar deuterated ammonia: From NH3 to ND3
We use spectra and maps of NH2D, ND2H, and ND3, obtained with the CSO, IRAM
30m and Arecibo telescopes, to study deuteration processes in dense cores. The
data include the first detection of the hyperfine structure of ND2H. The
emission of ND2H and ND3 does not seem to peak at the positions of the embedded
protostars, but instead at offset positions, where outflow interactions may
occur. A constant ammonia fractionation ratio in star-forming regions is
generally assumed to be consistent with an origin on dust grains. However, in
the pre-stellar cores studied here, the fractionation varies significantly when
going from NH3 to ND3. We present a steady state model of the gas-phase
chemistry for these sources, which includes passive depletion onto dust grains
and multiply saturated deuterated species up to five deuterium atoms (e.g.
CD5+). The observed column density ratios of all four ammonia isotopologues are
reproduced within a factor of 3 for a gas temperature of 10 K. We also predict
that deuterium fractionation remains significant at temperatures up to 20 K. ND
and NHD, which have rotational transitions in the submillimeter domain are
predicted to be abundant.Comment: 14 pages, 12 figures, 12 table
Spectroscopy and dissociative recombination of the lowest rotational states of H3+
The dissociative recombination of the lowest rotational states of H3+ has
been investigated at the storage ring TSR using a cryogenic 22-pole
radiofrequency ion trap as injector. The H3+ was cooled with buffer gas at ~15
K to the lowest rotational levels, (J,G)=(1,0) and (1,1), which belong to the
ortho and para proton-spin symmetry, respectively. The rate coefficients and
dissociation dynamics of H3+(J,G) populations produced with normal- and para-H2
were measured and compared to the rate and dynamics of a hot H3+ beam from a
Penning source. The production of cold H3+ rotational populations was
separately studied by rovibrational laser spectroscopy using chemical probing
with argon around 55 K. First results indicate a ~20% relative increase of the
para contribution when using para-H2 as parent gas. The H3+ rate coefficient
observed for the para-H2 source gas, however, is quite similar to the H3+ rate
for the normal-H2 source gas. The recombination dynamics confirm that for both
source gases, only small populations of rotationally excited levels are
present. The distribution of 3-body fragmentation geometries displays a broad
part of various triangular shapes with an enhancement of ~12% for events with
symmetric near-linear configurations. No large dependences on internal state or
collision energy are found.Comment: 10 pages, 9 figures, to be published in Journal of Physics:
Conference Proceeding
- …