51 research outputs found

    Color screening and the suppression of the charmonium state yield in nuclear reactions

    Get PDF
    We discuss the new data for the production of the psi meson in pA collisions at 450 GeV at CERNSPS (of the NA50-collaboration) [1]. We extract from the CERN data sigma(psi'N) 8 mb under the assumption that the psi is produced as a result of the space-time evolution of a point-like cÂŻc pair which expands with time to the full size of the charmonium state. In the analysis we assume the existence of a relationship between the distribution of color in a hadron and the cross section of its interaction with a nucleon. However, our result is rather sensitive to the pattern of the expansion of the wave packet and significantly larger values of sigma(psi'N)are not ruled out by the data. We show that recent CERN data confirm the suggestion of ref. [2] that color fluctuations of the strengths in charmonium-nucleon interaction are the major source of suppression of the J/psi yield as observed at CERN in both pA and AA collisions

    Charmonium suppression from purely geometrical effects

    Get PDF
    The extend to which geometrical effects contribute to the production and suppression of the J/psi and qq minijet pairs in general is investigated for high energy heavy ion collisions at SPS, RHIC and LHC energies. For the energy range under investigation, the geometrical e ects referred to are shadowing and anti-shadowing, respectively. Due to those effects, the parton distributions in nuclei deviate from the naive extrapolation from the free nucleon result; fA 6= AfN. The strength of the shadowing/anti-shadowing e ect increases with the mass number. Therefore it is interesting to see the di erence between cross sections for e.g. S+U vs. Pb+Pb at SPS. The recent NA50 results for the survival probability of produced J/psi s has attracted great attention and are often interpreted as a signature of a quark gluon plasma. This publication will present a fresh look on hard QCD e ects for the charmonium production level. It is shown that the apparent suppression of J/psi s must also be linked to the production process. Due to the uncertainty in the shadowing of gluons the suppression of charmonium states might not give reli- able information on a created plasma phase at the collider energies soon available. The consequences of shadowing e ects for the xF distribution of J/psi s at s = 20 GeV, s = 200 GeV and s = 6 TeV are calculated for some relevant combinations of nuclei, as well as the pT distribution of minijets at midrapidity for Nf = 4 in the final state

    Suppression of quarkonium production in heavy ion collisions at RHIC and LHC

    Get PDF
    A model for the production of quarkonium states in the midrapidity region at RHIC and LHC energy range is presented which explores well understood properties of QCD only. An increase of the quarkonium hadronisation time with the initial energy leads to a gradual change of the most important phenomena from fixed target- to collider-energies. We evaluate nuclear e ects in the quarkonium production due to medium modification of the momentum distribution of the heavy quarks produced in the hard interactions, i.e. due to the broadening of the transverse momentum distribution. Other nuclear effects, i.e. nuclear shadowing and parton energy loss, are also evaluated

    Dynamics of strangeness production and strange matter formation

    Get PDF
    We want to draw the attention to the dynamics of a (finite) hadronizing quark matter drop. Strange and antistrange quarks do not hadronize at the same time for a baryon-rich system1. Both the hadronic and the quark matter phases enter the strange sector fs 6= 0 of the phase diagram almost immediately, which has up to now been neglected in almost all calculations of the time evolution of the system. Therefore it seems questionable, whether final particle yields reflect the actual thermodynamic properties of the system at a certain stage of the evolution. We put special interest on the possible formation of exotic states, namely strangelets (multistrange quark clusters). They may exist as (meta-)stable exotic isomers of nuclear matter 2. It was speculated that strange matter might exist also as metastable exotic multi-strange (baryonic) objects (MEMO s 3). The possible creation in heavy ion collisions of long-lived remnants of the quark-gluon-plasma, cooled and charged up with strangeness by the emission of pions and kaons, was proposed in 1,4,5. Strangelets can serve as signatures for the creation of a quark gluon plasma. Currently, both at the BNL-AGS and at the CERN-SPS experiments are carried out to search for MEMO s and strangelets, e. g. by the E864, E878 and the NA52 collaborations9

    Nuclear broadening effects on hard prompt photons at relativistic energies

    Get PDF
    We calculate prompt photon production in high-energy nuclear collisions. We focus on the broadening of the intrinsic transverse momenta of the partons in the initial state from nuclear e ects, and their influence on the prompt photon pt distribution. Comparing to WA98 data from Pb+Pb collisions at s = 17.4A GeV we find evidence for the presence of nuclear broadening at high pt in this hard process. Below pt < 2.7 GeV the photon distribution is due to small momentum transfer processes. At RHIC energy, s = 200A GeV, the e ect of intrinsic transverse momentum on the spectrum of prompt photons is less prominent. The region pt = 3 4 GeV would be the most promising for studying the nuclear broadening effects at that energy. Below pt = 2 3 GeV the contribution from large momentum transfers flattens out, and we expect that region to be dominated by soft contributions

    Charmonium suppression : interplay of hadronic and partonic degrees of freedom

    Get PDF
    Last year the E866-group of the Fermilab measured the xF dependence of J/Psi and 2 suppression in pA collisions. We discuss two of the effects found in that experiment with regard to color coherence effects: the di erent suppression of the J/Psi and the 2 at xF < 0 and the significant suppression of both at large xF . The small xF regions is dominated by fully formed charmonium states and thus enables us to discuss the formation time and the cross section of the different charmonium states. In the large xF region the interaction of the charmonium states with nuclear matter has to be described by partonic degrees of freedom, because in that kinematic domain the formation time is much larger than the nuclear radii. The understanding of this region will be crucial for the interpretation of the data of the future heavy ion colliders RHIC and LHC

    Nuclear broadening effects on hard prompt photons at CERN-SPS and BNL-RHIC energies

    Get PDF
    We calculate prompt photon production in high-energy nuclear collisions. We focus on the broadening of the intrinsic transverse momenta of the partons in the initial state from nuclear effects, and their influence on the prompt photon pt distribution. Comparing to WA98 data from Pb+Pb collisions at s = 17.4A GeV we find evidence for the presence of nuclear broadening at high pt in this hard process. Below pt < 2.7 GeV the photon distribution is due to small momentum transfer processes. At RHIC energy, s = 200A GeV, the e ect of intrinsic transverse momentum on the spectrum of prompt photons is less prominent. The region pt = 3 4 GeV would be the most promising for studying the nuclear broadening e ects at that energy. Below pt = 2 3 GeV the contribution from large momentum transfers flattens out, and we expect that region to be dominated by soft contributions.Korrigierte Version unter dem Titel: Dumitru, Adrian ; Frankfurt, Leonid ; Gerland, Lars ; Stöcker, Horst ; Strikman, Mark : Nuclear broadening effects on hard prompt photons at relativistic energie

    Baryon stopping and strangeness production in ultra-relativistic heavy ion collisions

    Get PDF
    The stopping behaviour of baryons in massive heavy ion collisions ( s k 10AGeV) is investigated within di erent microscopic models. At SPS-energies the predictions range from full stopping to virtually total transparency. Experimental data are indicating strong stopping. The initial baryo-chemical potentials and temperatures at collider energies and their impact on the formation probability of strange baryon clusters and strangelets are discussed

    J/Psi production, chi polarization and color fluctuations

    Get PDF
    The hard contributions to the heavy quarkonium-nucleon cross sections are calculated based on the QCD factorization theorem and the nonrelativistic quarkonium model. We evaluate the nonperturbative part of these cross sections which dominates at psNN 20 GeV at the Cern Super Proton Synchrotron (SPS) and becomes a correction at psNN 6 TeV at the CERN Large Hadron Collider (LHC). J/psi production at the CERN SPS is well described by hard QCD, when the larger absorption cross sections of the states predicted by QCD are taken into account. We predict an A-dependent polarization of the states. The expansion of small wave packets is discussed
    • …
    corecore