13 research outputs found

    Effects of lng Mutations on LngA Expression, Processing, and CS21 Assembly in Enterotoxigenic Escherichia coli E9034A

    Get PDF
    Enterotoxigenic Escherichia coli (ETEC) is a major cause of morbidity in children under 5 years of age in low- and middle-income countries and a leading cause of traveler's diarrhea worldwide. The ability of ETEC to colonize the intestinal epithelium is mediated by fimbrial adhesins, such as CS21 (Longus). This adhesin is a type IVb pilus involved in adherence to intestinal cells in vitro and bacterial self-aggregation. Fourteen open reading frames have been proposed to be involved in CS21 assembly, hitherto only the lngA and lngB genes, coding for the major (LngA) and minor (LngB) structural subunit, have been characterized. In this study, we investigated the role of the LngA, LngB, LngC, LngD, LngH, and LngP proteins in the assembly of CS21 in ETEC strain E9034A. The deletion of the lngA, lngB, lngC, lngD, lngH, or lngP genes, abolished CS21 assembly in ETEC strain E9034A and adherence to HT-29 cells was reduced 90%, compared to wild-type strain. Subcellular localization prediction of CS21 proteins was similar to other well-known type IV pili homologues. We showed that LngP is the prepilin peptidase of LngA, and that ETEC strain E9034A has another peptidase capable of processing LngA, although with less efficiency. Additionally, we present immuno-electron microscopy imagens to show that the LngB protein could be localized at the tip of CS21, and probably helps to control CS21 length. In conclusion, our results demonstrate that the LngA, LngB, LngC, LngD, LngH, and LngP proteins are essential for CS21 assembly, as well as for bacterial aggregation and adherence to HT-29 cells

    Detection of Myosin 1g Overexpression in Pediatric Leukemia by Novel Monoclonal Antibodies

    No full text
    Myosin 1g (Myo1g) is a mechanoenzyme associated with actin filaments, expressed exclusively in hematopoietic cells, and involved in various cellular functions, including cell migration, adhesion, and membrane trafficking. Despite the importance of Myo1g in distinct functions, there is currently no monoclonal antibody (mAb) against Myo1g. mAbs are helpful tools for the detection of specific antigens in tumor cells and other tissues. The development of mAbs against targeted dysregulated molecules in cancer cells remains a crucial tool for aiding in the diagnosis and the treatment of patients. Using hybridoma technology, we generated a panel of hybridomas specific for Myo1g. ELISA, immunofluorescence, and Western blot assay results revealed the recognition of Myo1g by these novel monoclonal antibodies in normal and transformed T and B cells. Here, we report the development and application of new monoclonal antibodies against Myo1g for their potential use to detect its overexpression in acute lymphoblastic leukemia (ALL) patients

    Detection of Myosin 1g Overexpression in Pediatric Leukemia by Novel Monoclonal Antibodies

    No full text
    Myosin 1g (Myo1g) is a mechanoenzyme associated with actin filaments, expressed exclusively in hematopoietic cells, and involved in various cellular functions, including cell migration, adhesion, and membrane trafficking. Despite the importance of Myo1g in distinct functions, there is currently no monoclonal antibody (mAb) against Myo1g. mAbs are helpful tools for the detection of specific antigens in tumor cells and other tissues. The development of mAbs against targeted dysregulated molecules in cancer cells remains a crucial tool for aiding in the diagnosis and the treatment of patients. Using hybridoma technology, we generated a panel of hybridomas specific for Myo1g. ELISA, immunofluorescence, and Western blot assay results revealed the recognition of Myo1g by these novel monoclonal antibodies in normal and transformed T and B cells. Here, we report the development and application of new monoclonal antibodies against Myo1g for their potential use to detect its overexpression in acute lymphoblastic leukemia (ALL) patients

    Proteomic changes in a childhood acute lymphoblastic leukemia cell line during the adaptation to vincristine

    No full text
    Introduction: Relapse occurs in approximately 20% of Mexican patients with childhood acute lymphoblastic leukemia (ALL). In this group, chemoresistance may be one of the biggest challenges. An overview of complex cellular processes like drug tolerance can be achieved with proteomic studies. Methods: The B-lineage pediatric ALL cell line CCRF-SB was gradually exposed to the chemotherapeutic vincristine until proliferation was observed at 6 nM, control cells were cultured in the absence of vincristine. The proteome from each group was analyzed by nanoHPLC coupled to an ESI-ion trap mass spectrometer. The identified proteins were grouped into overrepresented functional categories with the PANTHER classification system. Results: We found 135 proteins exclusively expressed in the presence of vincristine. The most represented functional categories were: Toll receptor signaling pathway, Ras Pathway, B and T cell activation, CCKR signaling map, cytokine-mediated signaling pathway, and oxidative phosphorylation. Conclusions: Our study indicates that signal transduction and mitochondrial ATP production are essential during adaptation of leukemic cells to vincristine, these processes represent potential therapeutic targets

    Myosin 1g as a high-risk biomarker in a pediatric patient with lineage switch from acute lymphoblastic leukemia to myeloid phenotype

    No full text
    Background: Myosin 1g (Myo1g) has recently been identified as a potential diagnostic biomarker in childhood acute lymphocytic leukemia (ALL). Case report: We describe the case of a 1-year-old Mexican female patient. Although initially studied for hepatomegaly, an infectious or genetic etiology was excluded. Liver biopsy showed infiltration by neoplastic B-cell precursors (BCPs), and bone marrow (BM) aspirate showed 14.5% of BCPs. In a joint session of the oncology, hematology, and pathology departments, low-risk (LR) BCP-ALL of hepatic origin with aberrant myeloid markers was diagnosed. Although treatment was initiated, the patient presented early with BM relapse. Modest overexpression of Myo1g was observed from the onset. However, at the end of the steroid window, expression increased significantly and remained elevated during this first relapse to BM. The parents refused hematopoietic stem cell transplantation, but she continued chemotherapy. After a second BM relapse at 5 years of age, the phenotype switched to myeloid. Her parents then opted for palliative care, and the patient died two months later at home. Conclusions: This case shows the potential use of Myo1g in clinical practice as a high-risk indicator. Myo1g monitoring may reveal a high risk and relapse trend, even when typical parameter values are not altered: Myo1g could be used to classify patients from low to high risk from diagnosis, allowing patients to promptly receive the best treatment and potentially modifying prognosis and survival

    Characterization of Cry toxins from autochthonous Bacillus thuringiensis isolates from Mexico

    No full text
    Background: Chemical pesticides, widely used in agriculture and vector-borne disease control, have shown toxic effects on the environment and the people in contact with them. Bacillus thuringiensis is a widely used bacterium for alternative and safer control of insect pests. Its toxins are specific for insects but innocuous for mammals and may be used as powerful adjuvants when applied with vaccines. The objective of this work was to characterize some autochthonous B. thuringiensis strains, which could be used for the control of a local pest (Diatraea considerata Heinrich) that affects sugar cane crops in Sinaloa, Mexico. Also, to evaluate these strains as a source of Cry toxins, which may be used in the future as adjuvants for some vaccines. Methods: Eight strains from field-collected dead insects were isolated. These were microbiologically identified as B. thuringiensis and confirmed by amplification and sequencing of 16S rDNA. Bioassays were performed to evaluate their pathogenicity against D. considerata, and Cry toxins were identified by proteomic analyses. Results: An increased mortality among larvae infected with strain Bt-D was observed, and its toxin was identified as Cry1Ac. Conclusions: The observed data showed that the selected strain was pathogenic to D. considerata and seemed to produce Cry1Ac protein, which has been reported as an adjuvant in different types of immunization

    Rab35-regulated lipid turnover by myotubularins represses mTORC1 activity and controls myelin growth

    No full text
    International audienceInherited peripheral neuropathies (IPNs) represent a broad group of disorders including Charcot-Marie-Tooth (CMT) neuropathies characterized by defects primarily arising in myelin, axons, or both. The molecular mechanisms by which mutations in nearly 100 identified IPN/CMT genes lead to neuropathies are poorly understood. Here we show that the Ras-related GTPase Rab35 controls myelin growth via complex formation with the myotubularin-related phosphatidylinositol (PI) 3-phosphatases MTMR13 and MTMR2, encoded by genes responsible for CMT-types 4B2 and B1 in humans, and found that it downregulates lipid-mediated mTORC1 activation, a pathway known to crucially regulate myelin biogenesis. Targeted disruption of Rab35 leads to hyperactivation of mTORC1 signaling caused by elevated levels of PI 3-phosphates and to focal hypermyelination in vivo. Pharmacological inhibition of phosphatidylinositol 3,5-bisphosphate synthesis or mTORC1 signaling ameliorates this phenotype. These findings reveal a crucial role for Rab35-regulated lipid turnover by myotubularins to repress mTORC1 activity and to control myelin growth
    corecore