18 research outputs found

    Sensitization of human melanoma cells for TRAIL-induced apoptosis by a selective aurora kinase A inhibitor

    Get PDF
    Different therapeutic strategies in metastatic melanoma focused on signalling pathways controlling cell proliferation, cell cycle and apoptosis. While TRAIL (TNF-related apoptosis inducing ligand) has been shown to be an interesting candidate for inducing apoptosis in cancer cells without affecting normal cells, the ability of cancer cells to develop resistance, limits its therapeutic potential. Using a recently established experimental A-375 melanoma cell model for investigating TRAIL resistance, we could demonstrate that the aurora kinase A inhibitor Alisertib (MLN 8237) enhances the proapoptotic effects of TRAIL and sensitizes TRAIL-selected melanoma cells with acquired resistance, associated with an activation of intrinsic mitochondrial apoptotic pathways. In course of this activation an upregulation of p53 in the nuclear fraction was shown. Thus, the aurora kinase A inhibitor Alisertib is able to overcome TRAIL-induced resistance in melanoma cells suggesting the combination of TRAIL and Alisertib as a promising therapeutic strategy for metastatic melanoma.

    Selective Induction of Apoptosis in Melanoma Cells by Tyrosinase Promoter-Controlled CD95 Ligand Overexpression

    Get PDF
    Induction of apoptosis has been demonstrated previously by overexpression of CD95 ligand (CD95L) in cultured human melanoma cells. For in vivo approaches based on CD95L, however, targeted expression is a prerequisite and tyrosinase promoters have been considered for selection. Luciferase reporter gene assays performed for a representative panel of melanoma cell lines characterized by strong (SK-Mel-19), moderate (SK-Mel-13, MeWo), weak (A-375), and missing expression (M-5) of endogenous tyrosinase revealed high tyrosinase promoter activities in SK-Mel-19, SK-Mel-13, and MeWo, but only weak activities in A-375 and M-5 as well as in non-melanoma cell lines. After transfection of a CMV promoter CD95L expression construct, melanoma cells were found highly sensitive, as compared with non-melanoma cells. By applying a tyrosinase promoter CD95L construct, apoptosis was selectively induced in SK-Mel-19, SK-Mel-13, MeWo as well as in A-375, which was characterized by high CD95 surface expression and high sensitivity to agonistic CD95 activation. M5 and non-melanoma cell lines remained uninfluenced. Also, resistance to agonistic CD95 activation seen in MeWo characterized by weak CD95 surface expression was overcome by overexpression of CD95L. Our investigations provide evidence that tyrosinase promoter CD95L constructs may be of value for selective induction of apoptosis in therapeutic strategies for melanoma

    The Bax/Bcl-2 Ratio Determines the Susceptibility of Human Melanoma Cells to CD95/Fas-Mediated Apoptosis

    Get PDF
    Defective cytochrome c release and the resulting loss of caspase-3 activation was recently shown to be essential for the susceptibility of human melanoma cells to CD95/Fas-induced apoptosis. Cytochrome c release from mitochondria is regulated by the relative amounts of apoptosis-promoting and apoptosis-inhibiting Bcl-2 proteins in the outer membrane of these organelles. The assignment of Bax/Bcl-2 ratios by quantitative Western blotting in 11 melanoma cell populations revealed a relation to the susceptibility to CD95-mediated apoptosis. We could show that a low Bax/Bcl-2 ratio was characteristic for resistant cells and a high Bax/Bcl-2 ratio was characteristic for sensitive cells. Low Bax expression was not a consequence of mutations in the p53 coding sequence. The Bax/Bcl-2 ratio was also in clear correlation with sensitivity to another cell death inducer, N-acetylsphingosine. Furthermore, Bcl-2 overexpression abolished apoptosis triggered by both apoptotic stimuli, confirming the critical role of the Bax/Bcl-2 ratio as a rheostat that determines the susceptibility to apoptosis in melanoma cells by regulating mitochondrial function. Interestingly, some chemotherapeutics lead to the activation of death pathways by CD95L upregulation, ceramide generation, direct activation of upstream caspases, or upregulation of proapoptotic genes. Taken together, these signals enter the apoptotic pathway upstream of mitochondria, resulting in activation of this central checkpoint. We therefore assumed that apoptosis deficiency of malignant melanoma can be circumvented by drugs directly influencing mitochondrial functions. For this purpose we used betulinic acid, a cytotoxic agent selective for melanoma, straightly perturbing mitochondrial functions. In fact, betulinic acid induced mitochondrial cytochrome c release and DNA fragmentation in both CD95-resistant and CD95-sensitive melanoma cell populations, independent of the Bax/Bcl-2 ratio

    Bcl-2 antagonizes apoptotic cell death induced by two new ceramide analogues

    Get PDF
    AbstractCeramides which arise in part from the breakdown of sphingomyelin comprise a class of antiproliferative lipids and have been implicated in the regulation of programmed cell death better known as apoptosis. In the present study, two new synthetic ceramide analogues, N-thioacetylsphingosine and FS-5, were used in Molt4 cells to induce cell death. Besides their cytotoxic effects at concentrations ≥14 μM the data obtained clearly show that both analogues induced apoptosis at concentrations below this critical concentration as assessed by trypan blue exclusion and cleavage of the death substrate poly-(ADP-ribose) polymerase (PARP). Additional experiments in bcl-2-transfected Molt4 cells revealed that the apoptotic but not the lytic effects of the analogues were antagonized by the apoptosis inhibitor Bcl-2. Furthermore, neither N-thio-acetylsphingosine nor FS-5 induced PARP cleavage in bcl-2-transfected Molt4 cells indicating that the induction of apoptotic cell death by cell permeable ceramides is not due to unspecific disturbance of the cell membrane

    Endothelin-1 Decreases Basic Apoptotic Rates in Human Melanoma Cell Lines

    Get PDF
    Normal human melanocytes respond to endothelin-1 with induced proliferation and differentiation. Whereas in cultured melanoma cells the predominant endothelin receptor, ET(B)-R, is consistently downregulated, ET(B)-R upregulation was recently reported for melanoma tumors. Contrary to the pro-survival activity described for endothelin in vascular cells, a proapoptotic activity of endothelin-1 has been reported for melanoma cells, in previous studies. We therefore investigated the role of endothelin for melanoma cells with respect to apoptosis and proliferation. Treatment with 10 nM endothelin-1 was a strong mitogenic signal for normal human melanocytes, which responded with a 4–6-fold increase of thymidine incorporation, whereas the response was only 1.2-fold for SK-Mel-19, the melanoma cell line characterized by the highest ET(B)-R expression, and it was even less in other cell lines. Determination of the apoptotic rates revealed that endothelin-1 significantly reduced basic apoptotic rates to 75% both in SK-Mel-19 and in normal melanocytes. After cell synchronization, an antiapoptotic effect of endothelin-1 was seen in five of seven cell lines investigated. In the cell line Bro, which showed no response and which lacks ET(B)-R expression, responsibility could be restored by overexpression of ET(B)-R after stable transfection, indicating that the effectors of the endothelin-1 signal cascade were active in these cells, and that the antiapoptotic effect of endothelin-1 is mediated in a receptor-specific way. This antiapoptotic activity of endothelin for melanoma cells combined with upregulation of endothelin receptors in the tumor may be a crucial step for melanoma progression

    Bcl-2 overexpression prevents apoptosis induced by ceramidase inhibitors in malignant melanoma and HaCaT keratinocytes

    Get PDF
    AbstractWe examined the biological effects of the ceramide analogues (1S,2R)-2-N-myristoylamino-1-phenyl-1-propanol (D-e-MAPP) and (1R,2R)-2-N-myristoylamino-1-(4-nitrophenyl)-1,3-propandiol (D-NMAPPD) on human HaCaT keratinocytes and human melanoma cells. We could demonstrate that D-e-MAPP and D-NMAPPD are able to suppress acid ceramidase activity. The elevation of the endogenous level of ceramide is followed by induction of apoptosis and suppression of proliferation in HaCaT keratinocytes. Moreover, we recently identified a group of human melanoma cell populations which are heterogeneously susceptible to C2-ceramide-mediated apoptosis. Studies with these melanoma cells revealed correlation between ceramide-mediated apoptosis and D-NMAPPD-induced apoptosis, confirming the effect of this inhibitor on ceramide signaling in human melanoma cells. These findings suggest ceramidase inhibitors as a potential new therapeutical class of antiproliferative and cytostatic drugs
    corecore