45 research outputs found

    Reactive Element Effects in High-Temperature Alloys Disentangled

    Get PDF
    Reactive elements—REs—are decisive for the longevity of high-temperature alloys. This work joins several previous efforts to disentangle various RE effects in order to explain apparently contradicting experimental observations in alumina forming alloys. At 800–1000\ua0\ub0C, “messy” aluminum oxy-hydroxy-hydride transients initially formed due to oxidation by H2O which in turn\ua0undergo secondary oxidation by O2. The formation of the transient oxide becomes supported by dispersed RE oxide particles acting as water equivalents. At higher temperatures, electron conductivity in impurity states owing to oxygen vacancies in grain boundaries (GBs) becomes increasingly relevant. These channels are\ua0subsequently closed by REs pinning the\ua0said vacancies. The universality of the emerging understanding is supported by a comparative first-principles study by means of density functional theory addressing RE(III): Sc2O3, Y2O3, and La2O3, and RE(IV): TiO2, ZrO2, and HfO2, that upon reaction with water, co-decorate a generic GB model by hydroxide and RE ions. At 100% RE coverage, the GB model becomes relevant at both temperature regimes. Based on reaction enthalpy ΔHr considerations, “messy” aluminum oxy-hydroxy-hydride transients are accessed in both classes. Larger variations in ΔHr are found for RE(III)-decorated alumina GBs as compared to RE(IV). For RE(III), correlation with GB width is found, increasing with increased ionic radius. Similarly, upon varying RE(IV), minor changes in stability correlate with minor structural variations. GB decorations by Ce(III) and Ce(IV) further consolidate the emerging understanding. The findings are used to discuss experimental observations that include impact of co-doping by RE(III) and RE(IV)

    Superior protection by α-Al2O3/α-LiAlO2 double oxide scales against alkali carbonate corrosion

    Get PDF
    Ferritic alumina-forming alloys showed high corrosion resistance to molten carbonates by forming a protective α-LiAlO2 scale at their surface. In this work, four ferritic alumina-forming alloys were pre-oxidised before exposure to (Li,Na,K)2CO3-melt at 800 \ub0C for 1000 h. Only outer transient alumina, such as γ-alumina, reacts with the melt, forming LiAlO2. At the same time, the innermost α-Al2O3 scale remains intact. α-Al2O3, as well as α-LiAlO2, are slow-growing compressive stress-stabilised oxide scales. Thus, the combined presence of α-Al2O3/α-LiAlO2 improves the corrosion protection of materials investigated in this study, compared to non-pre-oxidised ones, by forming a superior double oxide scale

    Formation of corrosion pockets in FeNiCrAl at high temperatures investigated by 3D FIB-SEM tomography

    Get PDF
    A recently published study of high temperature nitridation of iron chromium aluminum alloys (FeCrAl) at 900 degrees C in N-2-H(2)has redundantly shown the formation of locally confined corrosion pockets reaching several microns into the alloy. These nitrided pockets form underneath chromia islands laterally surrounded by the otherwise protective alumina scale. Chromia renders a nitrogen-permeable defect under the given conditions and the presence of aluminum in the alloy. In light of these findings on FeCrAl, a focused ion beam-scanning electron microscope tomography study has been undertaken on an equally nitrided FeNiCrAl sample to characterize its nitridation corrosion features chemically and morphologically. The alloy is strengthened by a high number of chromium carbide precipitates, which are also preferential chromia formation sites. Besides the confirmation of the complete encapsulation of the corrosion pocket from the alloy by a closed and dense aluminum nitride rim, very large voids have been found in the said pockets. Furthermore, metallic particles comprising nickel and iron are deposited on top of the outer oxide scale above such void regions

    Evaporated Alkali Carbonate Effect on an Aluminum Diffusion Coated 253MA Vessel after 4000 h Discontinuous Operation— Lessons Learned

    Get PDF
    A vessel of a laboratory setup for hosting molten alkali carbonate immersion experiments was recently decommissioned after about 4000 h discontinuous operation at 800 \ub0C. In this article, we want to describe the long‐term damage of the vessel caused by evaporated alkali carbonate spe-cies in a carbon dioxide gas environment. The vessel is made of alloy 253MA and coated by an aluminum powder pack diffusion process. The degree of material loss and internal degradation did not correlate with the temperature profile across the vessel but rather with the vicinity to the gas and salt evaporation source. One millimeter of the vessel’s initial 5 mm wall thickness was com-pletely consumed at the strongest attacked location plus another 800 ÎŒm of internal attack beneath the metal–oxide interface

    Perspectives on selected alloys in contact with eutectic melts for thermal storage: Nitrates, carbonates and chlorides

    Get PDF
    Increasing the operating temperature of molten salt-based concentrated solar power plants is of paramount importance to enable next-generation gas turbines and an overall increase in power conversion efficiency. The issue is how to mitigate the degradation of necessary metallic components in highly corrosive salt environments. In this study, three eutectic salt mixture candidates, nitrates, carbonates, and chlorides, are brought into contact with stainless steel (316H or 304L) and the FeCrAl alloy Kanthal\uae APMT. The post-exposure analysis is discussed in terms of the overall performance of each alloy as concerns mass change, scale growth, internal attack, and leaching. Significant reduction of corrosion is realised through the ability of Kanthal\uae APMT to form aluminium oxide species at the surface in contact with alkali nitrates and carbonates. On the other hand, aluminium is leached most efficiently in contact with chlorides, which causes a deeper attack on Kanthal\uae APMT than alloy 304L. The overall conclusion is that only by employing a holistic perspective on all individual measurements can a long-term performance estimation be formulated

    Impact of Grain Boundary Density on Oxide Scaling Revisited

    Get PDF
    A straightforward conceptual tool for discriminating between different oxide scaling processes deviating from the parabolic standard model is formulated. Grain boundary diffusion-controlled oxide scaling is generalized to include lateral grains coarsening. Building on traditional Wagner theory, attenuation of rates of inwards growing oxides owing to the gradual loss of grain boundary density is revisited. Two viable cases are identified. One has the rate of grain boundary density loss to be independent of the rate of oxide growth, while the second case takes the two instantaneous rates to be equal. Simple parabolic–logarithmic and superparabolic–cubic expressions are arrived at for the two cases, respectively. Usefulness is demonstrated by applying the models to published experimental data from 1990 to date. Upon arrival at the superparabolic–cubic behaviour, a generic mathematical form analogous to a ‘spring force’ attenuating the scale growth was identified. ‘Parabolic’, ‘cubic’ and ‘logarithmic’ scaling emerges as limiting cases

    Additional data and experimental setups, for a comparative study of alloys in contact to eutectic melts for thermal storage

    Get PDF
    Three different eutectic salt mixtures have been brought into contact with three different high temperature alloys to assess corrosion damages for next-generation CSPs. This article contains additional material to support findings and assessments reported on our main article in the Solar Energy Journal [https://doi.org/10.1016/j.solener.2021.06.069]. Five sections, A-E, provide data to ensure reproducibility and confidence in our claims in the main article. A newly designed experimental setup for high temperature exposures is described as well as impurities within used chemicals. Material thickness measurements document alloy consumption by eutectic salts. Reaction enthalpies are listed illustrating individual metal species in contact with salt species at relevant temperatures. Thermodynamic single point equilibrium calculations have extended environmentally induced Laves phase precipitation found for alloy Kanthal APMT in contact with molten chlorides

    Differentiation in corrosion performance of alumina forming alloys in alkali carbonate melts

    Get PDF
    Alkali carbonate melts are promising high temperature thermal storage media. In this work five alumina forming alloys have been exposed to a ternary LiNaK carbonate melt and CO2 at 800 \ub0C. The corrosion propagation was found to depend on the formation of a slow-growing LiAlO2 scale. Furthermore, the two polymorphs contributing to the LiAlO2 phase were monitored for up to 1000 h: a dense α-LiAlO2 scale and γ-LiAlO2 crystallites. We suggest a growth stress assisted formation of α-LiAlO2 relaxing into the outwards growing γ-LiAlO2 phase. This implies a deceleration of the α-LiAlO2 scale growth towards a steady state-thickness

    Transition metal attenuated mechanism for protective alumina formation from first principles

    Get PDF
    A mechanistic perspective on the growth of protective oxides on high temperature alloys at elevated temperatures is provided. Early, defect rich transient alumina is understood to form by outwards diffusion of oxygen vacancies and electrons. The impact of transition metal (TM) ions (Sc, Ti,\ua0V, Cr, Mn, Fe, Co, Ni) on the oxygen vacancy diffusion and electron transport in α-alumina was studied by employing density functional theory. Activation energies for electron transfer EA(ET) between oxygen vacancies in pure as well as TM doped α-alumina were subject to analysis, and similarly so for the TM and charge dependent activation energy for oxygen vacancy diffusion EA(VO). EAQ(ET) were found to be ∌0.5 eV while 2 eV < EAQ(VO) < 5 eV was obtained. The higher and lower EAQ(VO) values correspond to uncharged and doubly charged VO sites, respectively. Redox processes among VO sites, addressed by a bipolaron approach, were understood to enhance VO mobility and thus to facilitate oxide growth. TM adatoms induced asymmetry in the potential energy surface for oxygen vacancy diffusion was subject to analysis. Competition for electrons between all-Al3+surrounded oxygen vacancies and vacancies adjacent to the late 3d adatoms comes out in favor of the latter. A novel take on the 3rd element effect in FeCrAl emerges from analysis of the ternary TM-TM*-Al system

    Exploring the Effect of Silicon on the High Temperature Corrosion of Lean FeCrAl Alloys in Humid Air

    Get PDF
    A new approach to reduce the chromium and aluminium concentrations in FeCrAl alloys without significantly impairing corrosion resistance is to alloy with 1-2 wt.% silicon. This paper investigates the "silicon effect" on oxidation by comparing the oxidation behavior and scale microstructure of two FeCrAl alloys, one alloyed with silicon and the other not, in dry and wet air at 600 degrees C and 800 degrees C. Both alloys formed thin protective oxide scales and the Cr-evaporation rates were small. In wet air at 800 degrees C the Si-alloyed FeCrAl formed an oxide scale containing mullite and tridymite together with alpha- and gamma-alumina. It is suggested that the reported improvement of the corrosion resistance of Al- and Cr-lean FeCrAl\u27s by silicon alloying is caused by the appearance of Si-rich phases in the scale
    corecore