3 research outputs found

    Parameter estimation for a nonlinear control-oriented tokamak profile evolution model

    No full text
    \u3cp\u3eA control-oriented tokamak profile evolution model is crucial for the development and testing of control schemes for a fusion plasma. The RAPTOR (RApid Plasma Transport simulatOR) code was developed with this aim in mind (Felici 2011 Nucl. Fusion 51 083052). The performance of the control system strongly depends on the quality of the control-oriented model predictions. In RAPTOR a semi-empirical transport model is used, instead of a first-principles physics model, to describe the electron heat diffusivity in view of computational speed. The structure of the empirical model is given by the physics knowledge, and only some unknown physics of , which is more complicated and less well understood, is captured in its model parameters. Additionally, time-averaged sawtooth behavior is modeled by an ad hoc addition to the neoclassical conductivity and electron heat diffusivity. As a result, RAPTOR contains parameters that need to be estimated for a tokamak plasma to make reliable predictions. In this paper a generic parameter estimation method, based on the nonlinear least-squares theory, was developed to estimate these model parameters. For the TCV tokamak, interpretative transport simulations that used measured profiles were performed and it was shown that the developed method is capable of finding the model parameters such that RAPTOR's predictions agree within ten percent with the simulated q profile and twenty percent with the measured profile. The newly developed model-parameter estimation procedure now results in a better description of a fusion plasma and allows for a less ad hoc and more automated method to implement RAPTOR on a variety of tokamaks.\u3c/p\u3

    Simulation of the motional stark effect on C-MOD using MSESIM and PERF

    No full text
    The Motional Stark Effect (MSE) is used to measure the internal topology of the magnetic field and radial electric field in a tokamak plasma. MSESIM, a MSE simulation code originally developed for MAST, was transformed to simulate the MSE effect on C-MOD. This code was extended to simulate the Paschen Back Effect and the non statistical population of the energy levels. MSESIM was benchmarked against PERF, a different MSE simulation code developed for JET and C-MOD, to gain more confidence in the results of both codes. MSESIM has been used to investigate the influence of the collection optics, beam divergence, collection volume, Paschen Back Effect, non statistical population of the energy levels and the narrow bandpass filter on the spectrum and polarisation angle of C-MOD. The MSESIM simulation results were compared with measurement to assess how well the code simulates reality

    Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution

    No full text
    \u3cp\u3eIntegrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement . Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.\u3c/p\u3
    corecore