6,332 research outputs found
Traces of Thermalization from Transverse Momentum Fluctuations in Nuclear Collisions
Scattering of particles produced in Au+Au collisions at RHIC can wrestle the
system into a state near local thermal equilibrium. I illustrate how
measurements of the centrality dependence of the mean transverse momentum and
its fluctuations can exhibit this thermalization.Comment: 4 pages, 2 eps figures, final version to appear in PR
The Rotating Quantum Thermal Distribution
We show that the rigidly rotating quantum thermal distribution on flat
space-time suffers from a global pathology which can be cured by introducing a
cylindrical mirror if and only if it has a radius smaller than that of the
speed-of-light cylinder. When this condition is met, we demonstrate numerically
that the renormalized expectation value of the energy-momentum stress tensor
corresponds to a rigidly rotating thermal bath up to a finite correction except
on the mirror where there are the usual Casimir divergences.Comment: 8 pages, 2 PostScript figure
Asymptotically Optimal Quantum Circuits for d-level Systems
As a qubit is a two-level quantum system whose state space is spanned by |0>,
|1>, so a qudit is a d-level quantum system whose state space is spanned by
|0>,...,|d-1>. Quantum computation has stimulated much recent interest in
algorithms factoring unitary evolutions of an n-qubit state space into
component two-particle unitary evolutions. In the absence of symmetry, Shende,
Markov and Bullock use Sard's theorem to prove that at least C 4^n two-qubit
unitary evolutions are required, while Vartiainen, Moettoenen, and Salomaa
(VMS) use the QR matrix factorization and Gray codes in an optimal order
construction involving two-particle evolutions. In this work, we note that
Sard's theorem demands C d^{2n} two-qudit unitary evolutions to construct a
generic (symmetry-less) n-qudit evolution. However, the VMS result applied to
virtual-qubits only recovers optimal order in the case that d is a power of
two. We further construct a QR decomposition for d-multi-level quantum logics,
proving a sharp asymptotic of Theta(d^{2n}) two-qudit gates and thus closing
the complexity question for all d-level systems (d finite.) Gray codes are not
required, and the optimal Theta(d^{2n}) asymptotic also applies to gate
libraries where two-qudit interactions are restricted by a choice of certain
architectures.Comment: 18 pages, 5 figures (very detailed.) MatLab files for factoring qudit
unitary into gates in MATLAB directory of source arxiv format. v2: minor
change
Metabolomic profiling and stable isotope labelling of Trichomonas vaginalis and Tritrichomonas foetus reveal major differences in amino acid metabolism including the production of 2-hydroxyisocaproic acid, cystathionine and S-methylcysteine
Trichomonas vaginalis and Tritrichomonas foetus are pathogens that parasitise, respectively, human and bovine urogenital tracts causing disease. Using LC-MS, reference metabolomic profiles were obtained for both species and stable isotope labelling with D-[U-13C6] glucose was used to analyse central carbon metabolism. This facilitated a comparison of the metabolic pathways of T. vaginalis and T. foetus, extending earlier targeted biochemical studies. 43 metabolites, whose identities were confirmed by comparison of their retention times with authentic standards, occurred at more than 3-fold difference in peak intensity between T. vaginalis and T. foetus. 18 metabolites that were removed from or released into the medium during growth also showed more than 3-fold difference between the species. Major differences were observed in cysteine and methionine metabolism in which homocysteine, produced as a bi-product of trans-methylation, is catabolised by methionine Îł-lyase in T. vaginalis but converted to cystathionine in T. foetus. Both species synthesise methylthioadenosine by an unusual mechanism, but it is not used as a substrate for methionine recycling. T. vaginalis also produces and exports high levels of S-methylcysteine, whereas only negligible levels were found in T. foetus which maintains significantly higher intracellular levels of cysteine. 13C-labeling confirmed that both cysteine and S-methylcysteine are synthesised by T. vaginalis; S-methylcysteine can be generated by recombinant T. vaginalis cysteine synthase using phosphoserine and methanethiol. T. foetus contained higher levels of ornithine and citrulline than T. vaginalis and exported increased levels of putrescine, suggesting greater flux through the arginine dihydrolase pathway. T. vaginalis produced and exported hydroxy acid derivatives of certain amino acids, particularly 2-hydroxyisocaproic acid derived from leucine, whereas negligible levels of these metabolites occurred in T. foetus
Charmonium suppression from purely geometrical effects
The extend to which geometrical effects contribute to the production and
suppression of the and minijet pairs in general is
investigated for high energy heavy ion collisions at SPS, RHIC and LHC
energies. For the energy range under investigation, the geometrical effects
referred to are shadowing and anti-shadowing, respectively. Due to those
effects, the parton distributions in nuclei deviate from the naive
extrapolation from the free nucleon result; . The strength
of the shadowing/anti-shadowing effect increases with the mass number. The
consequences of gluonic shadowing effects for the distribution of
's at GeV, GeV and TeV are
calculated for some relevant combinations of nuclei, as well as the
distribution of minijets at midrapidity for in the final state.Comment: corrected some typos, improved shadowing ratio
Time evolution of the chiral phase transition during a spherical expansion
We examine the non-equilibrium time evolution of the hadronic plasma produced
in a relativistic heavy ion collision, assuming a spherical expansion into the
vacuum. We study the linear sigma model to leading order in a large-
expansion. Starting at a temperature above the phase transition, the system
expands and cools, finally settling into the broken symmetry vacuum state. We
consider the proper time evolution of the effective pion mass, the order
parameter , and the particle number distribution. We
examine several different initial conditions and look for instabilities
(exponentially growing long wavelength modes) which can lead to the formation
of disoriented chiral condensates (DCCs). We find that instabilities exist for
proper times which are less than 3 fm/c. We also show that an experimental
signature of domain growth is an increase in the low momentum spectrum of
outgoing pions when compared to an expansion in thermal equilibrium. In
comparison to particle production during a longitudinal expansion, we find that
in a spherical expansion the system reaches the ``out'' regime much faster and
more particles get produced. However the size of the unstable region, which is
related to the domain size of DCCs, is not enhanced.Comment: REVTex, 20 pages, 8 postscript figures embedded with eps
Making rules to live by: Was the proposed regulatory regime for invasive species reasonable? Perceptions of the South African trout industry
Despite considerable economic impact of trout-based aquaculture and recreational fishing, the Department of Environmental Affairs has been focusing almost entirely on ecological criteria in deciding the regulatory regime for trout. We examined whether the proposed regulatory regime for alien and invasive species that was published by the Department of Environmental Affairs in 2014 for public comment was reasonable. The analysis produced factors that might matter in the design of reasonable institutional arrangements that impose a reasonable regulatory burden on economic sectors utilising invasive species. We conducted factor analysis using an online survey that we conducted between May and July 2014. We obtained four clusters of factors: participatory policymaking, people-centeredness, credible scientific evidence for listing species as invasive and contextualisation of international evidence. We then utilised the factors in a logistic regression framework to assess their influence on the probability of perceiving the regulations to be reasonable. The likelihood of a trout sector player perceiving the regulations to be reasonable was 1.2%. We found that a one standard deviation increase in the âcredibility of scientific evidenceâ increased the odds of perceiving the regulations to be reasonable by 1645%. A one standard deviation increase in âparticipationâ increased the odds of perceiving the regulations to be reasonable by 410%. A one standard deviation increase in âpeople-centerednessâ increased the odds of perceiving the regulations to be reasonable by 600%. Lastly, a one standard deviation increase in the variable âcontextualising international evidenceâ increased the odds of perceiving the regulations to be reasonable by 415%. This research demonstrates that properly addressing the socioeconomic aspects of new policies in addition to ecological criteria makes it far more likely that stakeholders will regard them as reasonable, even if the new policies impose increased regulatory transaction cost burden on users or reduced access to a resource
Garbage collection auto-tuning for Java MapReduce on Multi-Cores
MapReduce has been widely accepted as a simple programming pattern that can form the basis for efficient, large-scale, distributed data processing. The success of the MapReduce pattern has led to a variety of implementations for different computational scenarios. In this paper we present MRJ, a MapReduce Java framework for multi-core architectures. We evaluate its scalability on a four-core, hyperthreaded Intel Core i7 processor, using a set of standard MapReduce benchmarks. We investigate the significant impact that Java runtime garbage collection has on the performance and scalability of MRJ. We propose the use of memory management auto-tuning techniques based on machine learning. With our auto-tuning approach, we are able to achieve MRJ performance within 10% of optimal on 75% of our benchmark tests
Lifetime of a Disoriented Chiral Condensate
The lifetime of a disoriented chiral condensate formed within a heat bath of
pions is calculated assuming temperatures and densities attainable at present
and future heavy-ion colliders. A generalization of the reduction formula to
include coherent states allows us to derive a formula for the decay rate. We
predict the half-life to be between 4 and 7 fm/c, depending on the assumed pion
density. We also calculate the lifetime in the presence of higher resonances
and baryons, which shortens the lifetime by at most 20%.Comment: 9 pages, 3 figures, REVTeX, Eq. (3) modifie
Triply Differential Ionization of Ar by 500 EV Positron and Electron Impact
Coincidences between recoil ions-ejected electrons and recoil ions-scattered projectiles have been used to study the kinematics of electron and positron impact ionization. Triply Differential (TDCS) data for 500 eV positron and electron impact on Ar are presented here as function of scattering angle for a given range of energy losses. Binary and recoil interactions can be distinguished allowing us to determine the relative intensity between those interactions. Preliminary integration of the data indicate an enhancement of the binary region for positron interaction while for electron impact the intensity of the recoil and binary interactions is comparable
- âŠ