92 research outputs found
An active transverse energy filter to differentiate low energy particles with large pitch angles in a strong magnetic field
We present the idea and proof of principle measurements for an angular-selective active filter for charged particles. The motivation for the setup arises from the need to distinguish background electrons from signal electrons in a spectrometer of MAC-E filter type. While a large fraction of the background electrons exhibit predominantly small angles relative to the magnetic guiding field (corresponding to a low amount of kinetic energy in the motion component transverse to the field lines, in the following referred to as transverse energy) and pass the filter mostly unhindered, signal electrons from an isotropically emitting source interact with the active filter and are detected. The concept is demonstrated using a microchannel plate (MCP) as an active filter element. When correctly aligned with the magnetic field, electrons with a small transverse energy pass the channels of the MCP without interaction while electrons with large transverse energies hit the channel walls and trigger an avalanche of secondary electrons that is subsequently detected. Due to several drawbacks of MCPs for an actual transverse energy filter, an alternative detection technique using microstructured Si-PIN diodes is proposed
Moduli Spaces for Four- and Five- Dimensional Black Holes
We propose a universal expression for the moduli metric of a class of four-
and five-dimensional black holes which preserve at least four supersymmetries.
These include the black holes that are associated with various intersecting
branes in ten and eleven dimensions, the electrically charged black holes of
N=2 D=5 and N=2 D=4 supergravities with any number of vector multiplets, and
dyonic black holes of N=2 D=4 supergravity. The moduli metric of electrically
charged N=2 D=4 black holes coupled to any number of vector multiplets is
explicitly computed. We also investigate the superconformal symmetries of the
black hole moduli spaces for small black hole separations.Comment: 44 pages, phyzzx.tex, minor corrections, some more references adde
Recommended from our members
Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN.
We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (-1.0_{-1.1}^{+0.9})ââeV^{2}. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of 2 and provides model-independent input to cosmological studies of structure formation
Analysis methods for the first KATRIN neutrino-mass measurement
We report on the dataset, data handling, and detailed analysis techniques of the first neutrino-mass measurement by the Karlsruhe Tritium Neutrino (KATRIN) experiment, which probes the absolute neutrino-mass scale via the ÎČ-decay kinematics of molecular tritium. The source is highly pure, cryogenic T2 gas. The ÎČ electrons are guided along magnetic field lines toward a high-resolution, integrating spectrometer for energy analysis. A silicon detector counts ÎČ electrons above the energy threshold of the spectrometer, so that a scan of the thresholds produces a precise measurement of the high-energy spectral tail. After detailed theoretical studies, simulations, and commissioning measurements, extending from the molecular final-state distribution to inelastic scattering in the source to subtleties of the electromagnetic fields, our independent, blind analyses allow us to set an upper limit of 1.1 eV on the neutrino-mass scale at a 90% confidence level. This first result, based on a few weeks of running at a reduced source intensity and dominated by statistical uncertainty, improves on prior limits by nearly a factor of two. This result establishes an analysis framework for future KATRIN measurements, and provides important input to both particle theory and cosmology
Quantitative Long-Term Monitoring of the Circulating Gases in the KATRIN Experiment Using Raman Spectroscopy
The Karlsruhe Tritium Neutrino (KATRIN) experiment aims at measuring the effective electron neutrino mass with a sensitivity of 0.2 eV/c, i.e., improving on previous measurements by an order of magnitude. Neutrino mass data taking with KATRIN commenced in early 2019, and after only a few weeks of data recording, analysis of these data showed the success of KATRIN, improving on the known neutrino mass limit by a factor of about two. This success very much could be ascribed to the fact that most of the system components met, or even surpassed, the required specifications during long-term operation. Here, we report on the performance of the laser Raman (LARA) monitoring system which provides continuous high-precision information on the gas composition injected into the experimentâs windowless gaseous tritium source (WGTS), specifically on its isotopic purity of tritiumâone of the key parameters required in the derivation of the electron neutrino mass. The concentrations c for all six hydrogen isotopologues were monitored simultaneously, with a measurement precision for individual components of the order 10 or better throughout the complete KATRIN data taking campaigns to date. From these, the tritium purity, ΔT, is derived with precision of <10 and trueness of <3 Ă 10, being within and surpassing the actual requirements for KATRIN, respectively
Precision measurement of the electron energy-loss function in tritium and deuterium gas for the KATRIN experiment
The KATRIN experiment is designed for a direct and model-independent
determination of the effective electron anti-neutrino mass via a high-precision
measurement of the tritium -decay endpoint region with a sensitivity on
of 0.2eV/c (90% CL). For this purpose, the -electrons
from a high-luminosity windowless gaseous tritium source traversing an
electrostatic retarding spectrometer are counted to obtain an integral spectrum
around the endpoint energy of 18.6keV. A dominant systematic effect of the
response of the experimental setup is the energy loss of -electrons from
elastic and inelastic scattering off tritium molecules within the source. We
determined the \linebreak energy-loss function in-situ with a pulsed
angular-selective and monoenergetic photoelectron source at various
tritium-source densities. The data was recorded in integral and differential
modes; the latter was achieved by using a novel time-of-flight technique.
We developed a semi-empirical parametrization for the energy-loss function
for the scattering of 18.6-keV electrons from hydrogen isotopologs. This model
was fit to measurement data with a 95% T gas mixture at 30K, as used in
the first KATRIN neutrino mass analyses, as well as a D gas mixture of 96%
purity used in KATRIN commissioning runs. The achieved precision on the
energy-loss function has abated the corresponding uncertainty of
[arXiv:2101.05253] in the KATRIN
neutrino-mass measurement to a subdominant level.Comment: 12 figures, 18 pages; to be submitted to EPJ
Improved eV-scale sterile-neutrino constraints from the second KATRIN measurement campaign
We present the results of the light sterile neutrino search from the second Karlsruhe Tritium Neutrino (KATRIN) measurement campaign in 2019. Approaching nominal activity, 3.76Ă106 tritium ÎČ-electrons are analyzed in an energy window extending down to 40 eV below the tritium end point at E0=18.57ââkeV. We consider the 3Îœ+1 framework with three active and one sterile neutrino flavors. The analysis is sensitive to a fourth mass eigenstate m24âČ1600ââeV2 and active-to-sterile mixing |Ue4|2âł6Ă10â3. As no sterile-neutrino signal was observed, we provide improved exclusion contours on m24 and |Ue4|2 at 95% C.L. Our results supersede the limits from the Mainz and Troitsk experiments. Furthermore, we are able to exclude the large Îm241 solutions of the reactor antineutrino and gallium anomalies to a great extent. The latter has recently been reaffirmed by the BEST Collaboration and could be explained by a sterile neutrino with large mixing. While the remaining solutions at small Îm241 are mostly excluded by short-baseline reactor experiments, KATRIN is the only ongoing laboratory experiment to be sensitive to relevant solutions at large Îm241 through a robust spectral shape analysis
New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs
We report on the direct cosmic relic neutrino background search from the
first two science runs of the KATRIN experiment in 2019. Beta-decay electrons
from a high-purity molecular tritium gas source are analyzed by a
high-resolution MAC-E filter around the kinematic endpoint at 18.57 keV. The
analysis is sensitive to a local relic neutrino overdensity of 9.7e10 (1.1e11)
at a 90% (95%) confidence level. A fit of the integrated electron spectrum over
a narrow interval around the kinematic endpoint accounting for relic neutrino
captures in the Tritium source reveals no significant overdensity. This work
improves the results obtained by the previous kinematic neutrino mass
experiments at Los Alamos and Troitsk. We furthermore update the projected
final sensitivity of the KATRIN experiment to <1e10 at 90% confidence level, by
relying on updated operational conditions.Comment: 7 pages, 7 figure
New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs
We report on the direct search for cosmic relic neutrinos using data acquired during the first two science campaigns of the KATRIN experiment in 2019. Beta-decay electrons from a high-purity molecular tritium gas source are analyzed by a high-resolution MAC-E filter around the end point at 18.57 keV. The analysis is sensitive to a local relic neutrino overdensity ratio of η < 9.7 Ă 10/α (1.1 Ă 10/α) at a 90% (95%) confidence level with α = 1 (0.5) for Majorana (Dirac) neutrinos. A fit of the integrated electron spectrum over a narrow interval around the end point accounting for relic neutrino captures in the tritium source reveals no significant overdensity. This work improves the results obtained by the previous neutrino mass experiments at Los Alamos and Troitsk. We furthermore update the projected final sensitivity of the KATRIN experiment to η < 1Ă10/α at 90% confidence level, by relying on updated operational conditions
- âŠ