6 research outputs found

    Investigating the Stability of the Hill of the Acropolis of Athens, Greece, Using Fuzzy Logic and Remote Sensing Techniques

    No full text
    The main objective of this study was to investigate the stability of the Acropolis Hill, Greece, by developing a Rock Instability Model (RIM) based on fuzzy logic and remote sensing techniques. RIM aimed to identify locations on the rock formations of the Acropolis Hill that will potentially have instability issues due to the action of geomorphological factors, weathering and erosive processes. Six factors including lithology, slope angle, density of discontinuities, density of faults, density of surface runoff elements, and the orientation of the stratigraphy of the geological formations in relation to the orientation of the slope were considered as the most appropriate for implementing the proposed novel approach, with each variable classified and weighted by a fuzzy simple additive weighting method. Lithology and slope angle were considered the most significant variables that contributed to the overall stability of the Acropolis Hill. The outcomes of the RIM model were verified by remote sensing data and field observation, showing an agreement and high accuracy. From the satellite data analysis, it was concluded that for the entire Acropolis Hill, minor displacement rates were recorded, probably because of the extensive mitigation measures and consolidation works established in the recent past. Overall, the study highlighted the ability of the proposed methodology to be used as an alternative investigation tool in rock instability-related assessments valuable to land use planning and development, helping reduce the anticipated losses in highly susceptible zones

    Investigation of the Thiva 2020–2021 Earthquake Sequence Using Seismological Data and Space Techniques

    No full text
    We investigate an earthquake sequence involving an Mw = 4.6 mainshock on 2 December 2020, followed by a seismic swarm in July–October 2021 near Thiva, Central Greece, to identify the activated structures and understand its triggering mechanisms. For this purpose, we employ double-difference relocation to construct a high-resolution earthquake catalogue and examine in detail the distribution of hypocenters and the spatiotemporal evolution of the sequence. Furthermore, we apply instrumental and imaging geodesy to map the local deformation and identify long-term trends or anomalies that could have contributed to stress loading. The 2021 seismic swarm was hosted on a system of conjugate normal faults, including the eastward extension of the Yliki fault, with the main activated structures trending WNW–ESE and dipping south. No pre- or coseismic deformation could be associated with the 2021 swarm, while Coulomb stress transfer due to the Mw = 4.6 mainshock of December 2020 was found to be insufficient to trigger its nucleation. However, the evolution of the swarm is related to stress triggering by its major events and facilitated by pore-fluid pressure diffusion. The re-evaluated seismic history of the area reveals its potential to generate destructive Mw = 6.0 earthquakes; therefore, the continued monitoring of its microseismicity is considered important
    corecore