201 research outputs found

    Evidence for the involvement of lipid rafts localized at the ER-mitochondria associated membranes in autophagosome formation

    Get PDF
    Mitochondria-associated membranes (MAMs) are subdomains of the endoplasmic reticulum (ER) that interact with mitochondria. This membrane scrambling between ER and mitochondria appears to play a critical role in the earliest steps of autophagy. Recently, lipid microdomains, i.e. lipid rafts, have been identified as further actors of the autophagic process. In the present work, a series of biochemical and molecular analyses has been carried out in human fibroblasts with the specific aim of characterizing lipid rafts in MAMs and to decipher their possible implication in the autophagosome formation. In fact, the presence of lipid microdomains in MAMs has been detected and, in these structures, a molecular interaction of the ganglioside GD3, a paradigmatic “brick” of lipid rafts, with core-initiator proteins of autophagy, such as AMBRA1 and WIPI1, was revealed. This association seems thus to take place in the early phases of autophagic process in which MAMs have been hypothesized to play a key role. The functional activity of GD3 was suggested by the experiments carried out by knocking down ST8SIA1 gene expression, i.e., the synthase that leads to the ganglioside formation. This experimental condition results in fact in the impairment of the ER-mitochondria crosstalk and the subsequent hindering of autophagosome nucleation. We thus hypothesize that MAM raft-like microdomains could be pivotal in the initial organelle scrambling activity that finally leads to the formation of autophagosome. Introduction The interaction of the endoplasmic reticulum (ER) with mito- chondria occurs via certain subdomains of the ER, named mitochondria-associated membranes (MAMs), which allow membrane “scrambling” between these organelles and contrib- utes to the complex series of ER functions.1-3 Indeed, several regions of close apposition between the ER and mitochondria were detected by studies carried out several years ago.4,5 How- ever, since these studies provided only ultrastructural observa- tions, these reports remained neglected for a long time. In particular, while morphological evidence of the physical juxta- position between ER and mitochondria was described since 1959,6 it was experimentally proven only 30 y later. In fact, ana- lyzing ER fractions copurified with mitochondria in velocity sedimentation assays, mainly from rat liver cells, it was observed that mitochondria can tightly be associated with ele- ments of the ER and that the communication and intermixing between ER and mitochondria can be mediated by MAMs.7-12 These works also showed that these cosedimenting fractions were enriched in enzymes responsible for the synthesis of lipids. These findings suggested that MAMs could act as sites

    Changes in membrane lipids drive increased endocytosis following Fas ligation

    Get PDF
    Once activated, some surface receptors promote membrane movements that open new portals of endocytosis, in part to facilitate the internalization of their activated complexes. The prototypic death receptor Fas (CD95/Apo1) promotes a wave of enhanced endocytosis that induces a transient intermixing of endosomes with mitochondria in cells that require mitochondria to amplify death signaling. This initiates a global alteration in membrane traffic that originates from changes in key membrane lipids occurring in the endoplasmic reticulum (ER). We have focused the current study on specific lipid changes occurring early after Fas ligation. We analyzed the interaction between endosomes and mitochondria in Jurkat T cells by nanospray-Time-of-flight (ToF) Mass Spectrometry. Immediately after Fas ligation, we found a transient wave of lipid changes that drives a subpopulation of early endosomes to merge with mitochondria. The earliest event appears to be a decrease of phosphatidylcholine (PC), linked to a metabolic switch enhancing phosphatidylinositol (PI) and phosphoinositides, which are crucial for the formation of vacuolar membranes and endocytosis. Lipid changes occur independently of caspase activation and appear to be exacerbated by caspase inhibition. Conversely, inhibition or compensation of PC deficiency attenuates endocytosis, endosome-mitochondria mixing and the induction of cell death. Deficiency of receptor interacting protein, RIP, also limits the specific changes in membrane lipids that are induced by Fas activation, with parallel reduction of endocytosis. Thus, Fas activation rapidly changes the interconversion of PC and PI, which then drives enhanced endocytosis, thus likely propagating death signaling from the cell surface to mitochondria and other organelles

    Autophagy generates citrullinated peptides in human synoviocytes: a possible trigger for anti-citrullinated peptide antibodies

    Get PDF
    OBJECTIVES: Autophagy may represent a functional processing event that creates a substrate for autoreactivity. In particular, autophagy may play a role in the pathogenesis of RA, since autophagy is a key cellular event involved in the generation of citrullinated peptides, with consequent breakage of tolerance. Thus, in RA, autophagy may be the common feature in several situations (including smoking, joint injury and infection) that may drive the adaptive responses to citrullinated self-proteins. The aim of this study was the analysis, in vitro, of the role of autophagy in the generation of citrullinated peptides and, in vivo, of the relationship between autophagy and the production of anti-CCP antibodies (Abs). METHODS: For autophagy induction, fibroblast-like synoviocytes, primary fibroblasts and monocytes were stimulated with tunicamycin or rapamycin. Peptidyl arginine deiminase activity was tested by enzyme-linked immunosorbent assay, and protein citrullination was evaluated by western blotting. The main citrullinated RA candidate antigens, vimentin, α-enolase and filaggrin, were demonstrated by immunoprecipitation. The relationship between autophagy and anti-CCP Abs was analysed in 30 early-active RA patients. RESULTS: Our results demonstrated in vitro a role for autophagy in the citrullination process. Cells treated with tunicamycin or rapamycin showed peptidyl arginine deiminase 4 activation, with consequent protein citrullination. Immunoblotting and immunoprecipitation experiments, using specific Abs, identified the main citrullinated proteins: vimentin, α-enolase and filaggrin. In vivo, a significant association between levels of autophagy and anti-CCP Abs was observed in treatment-naïve early-active RA patients. CONCLUSION: These findings support the view that the processing of proteins in autophagy generates citrullinated peptides recognized by the immune system in RA

    Increased HMGB1 expression and release by mononuclear cells following surgical/anesthesia trauma

    Get PDF
    Introduction: High mobility group box 1 (HMGB1) is a key mediator of inflammation that is actively secreted by macrophages and/or passively released from damaged cells. The proinflammatory role of HMGB1 has been demonstrated in both animal models and humans, since the severity of inflammatory response is strictly related to serum HMGB1 levels in patients suffering from traumatic insult, including operative trauma. This study was undertaken to investigate HMGB1 production kinetics in patients undergoing major elective surgery and to address how circulating mononuclear cells are implicated in this setting. Moreover, we explored the possible relationship between HMGB1 and the proinflammatory cytokine interleukin-6 (IL-6). Methods: Forty-seven subjects, American Society of Anesthesiologists physical status I and II, scheduled for major abdominal procedures, were enrolled. After intravenous medication with midazolam (0.025 mg/Kg), all patients received a standard general anesthesia protocol, by thiopentone sodium (5 mg/Kg) and fentanyl (1.4 mu g/Kg), plus injected Vecuronium (0.08 mg/Kg). Venous peripheral blood was drawn from patients at three different times, t(0): before surgery, t(1): immediately after surgical procedure; t(2): at 24 hours following intervention. Monocytes were purified by incubation with anti-CD14-coated microbeads, followed by sorting with a magnetic device. Cellular localization of HMGB1 was investigated by flow cytometry assay; HMGB1 release in the serum by Western blot. Serum samples were tested for IL-6 levels by ELISA. A one-way repeated-measures analysis ANOVA was performed to assess differences in HMGB1 concentration over time, in monocytes and serum. Results: We show that: a) cellular expression of HMGB1 in monocytes at t(1) was significantly higher as compared to t(0); b) at t(2), a significant increase of HMGB1 levels was found in the sera of patients. Such an increase was concomitant to a significant down-regulation of cellular HMGB1, suggesting that the release of HMGB1 might partially derive from mononuclear cells; c) treatment of monocytes with HMGB1 induced in vitro the release of IL-6; d) at t(2), high amounts of circulating IL-6 were detected as compared to t(0). Conclusions: This study demonstrates for the first time that surgical/anesthesia trauma is able to induce an early intracellular upregulation of HMGB1 in monocytes of surgical patients, suggesting that HMGB1 derives, at least partially, from monocytes

    Using Two-Step Cluster Analysis and Latent Class Cluster Analysis to Classify the Cognitive Heterogeneity of Cross-Diagnostic Psychiatric Inpatients

    Get PDF
    The heterogeneity of cognitive profiles among psychiatric patients has been reported to carry significant clinical information. However, how to best characterize such cognitive heterogeneity is still a matter of debate. Despite being well suited for clinical data, cluster analysis techniques, like the Two-Step and the Latent Class, received little to no attention in the literature. The present study aimed to test the validity of the cluster solutions obtained with Two-Step and Latent Class cluster analysis on the cognitive profile of a cross-diagnostic sample of 387 psychiatric inpatients. Two-Step and Latent Class cluster analysis produced similar and reliable solutions. The overall results reported that it is possible to group all psychiatric inpatients into Low and High Cognitive Profiles, with a higher degree of cognitive heterogeneity in schizophrenia and bipolar disorder patients than in depressive disorders and personality disorder patients

    VARIABLE STARS AND STELLAR POPULATIONS IN ANDROMEDA XXV. III. A CENTRAL CLUSTER OR THE GALAXY NUCLEUS?

    Get PDF
    We present B and V time series photometry of Andromeda XXV, the third galaxy in our program on the Andromeda’s satellites, which we have imaged with the Large Binocular Cameras of the Large Binocular Telescope. The field of Andromeda XXV is found to contain 62 variable stars, for which we present light curves and characteristics of the light variation (period, amplitudes, variability type, mean magnitudes, etc.). The sample includes 57 RR Lyrae variables (46 fundamental-mode—RRab, and 11 first-overtone—RRc, pulsators), 3 anomalous Cepheids, 1 eclipsing binary system, and 1 unclassified variable. The average period of the RRab stars ( =0.60 σ = 0.04 days) and the period–amplitude diagram place Andromeda XXV in the class of the Oosterhoff-Intermediate objects. From the average luminosity of the RR Lyrae stars we derive for the galaxy a distance modulus of (m–M)0 = 24.63 ± 0.17 mag. The color–magnitude diagram reveals the presence in Andromeda XXV of a single, metal-poor ([Fe/H] = ‑1.8 dex) stellar population as old as ∌10–12 Gyr, traced by a conspicuous red giant branch and the large population of RR Lyrae stars. We discovered a spherically shaped high density of stars near the galaxy center. This structure appears to be at a distance consistent with Andromeda XXV and we suggest it could either be a star cluster or the nucleus of Andromeda XXV. We provide a summary and compare the number and characteristics of the pulsating stars in the M31 satellites analyzed so far for variability. Based on data collected with the Large Binocular Cameras at the Large Binocular Telescope

    The position of nonsense mutations can predict the phenotype severity : A survey on the DMD gene

    Get PDF
    A nonsense mutation adds a premature stop signal that hinders any further translation of a protein-coding gene, usually resulting in a null allele. To investigate the possible exceptions, we used theDMDgene as an ideal model. First, because dystrophin absence causes Duchenne muscular dystrophy (DMD), while its reduction causes Becker muscular dystrophy (BMD). Second, theDMDgene is X-linked and there is no second allele that can interfere in males. Third, databases are accumulating reports on many mutations and phenotypic data. Finally, becauseDMDmutations may have important therapeutic implications. For our study, we analyzed large databases (LOVD, HGMD and ClinVar) and literature and revised critically all data, together with data from our internal patients. We totally collected 2593 patients. Positioning these mutations along the dystrophin transcript, we observed a nonrandom distribution of BMD-associated mutations within selected exons and concluded that the position can be predictive of the phenotype. Nonsense mutations always cause DMD when occurring at any point in fifty-one exons. In the remaining exons, we found milder BMD cases due to early 5' nonsense mutations, if reinitiation can occur, or due to late 3' nonsense when the shortened product retains functionality. In the central part of the gene, all mutations in some in-frame exons, such as in exons 25, 31, 37 and 38 cause BMD, while mutations in exons 30, 32, 34 and 36 cause DMD. This may have important implication in predicting the natural history and the efficacy of therapeutic use of drug-stimulated translational readthrough of premature termination codons, also considering the action of internal natural rescuers. More in general, our survey confirm that a nonsense mutation should be not necessarily classified as a null allele and this should be considered in genetic counselling.Peer reviewe

    Different chronic stress paradigms converge on endogenous TDP43 cleavage and aggregation

    Get PDF
    The TAR-DNA binding protein (TDP43) is a nuclear protein whose cytoplasmic inclusions are hallmarks of Amyotrophic Lateral Sclerosis (ALS). Acute stress in cells causes TDP43 mobilization to the cytoplasm and its aggregation through different routes. Although acute stress elicits a strong phenotype, is far from recapitulating the years-long aggregation process. We applied different chronic stress protocols and described TDP43 aggregation in a human neuroblastoma cell line by combining solubility assays, thioflavin-based microscopy and flow cytometry. This approach allowed us to detect, for the first time to our knowledge in vitro, the formation of 25 kDa C-terminal fragment of TDP43, a pathogenic hallmark of ALS. Our results indicate that chronic stress, compared to the more common acute stress paradigm, better recapitulates the cell biology of TDP43 proteinopathies. Moreover, we optimized a protocol for the detection of bona fide prions in living cells, suggesting that TDP43 may form amyloids as a stress response

    Discovering microbiota and volatile compounds of surströmming, the traditional Swedish sour herring

    Get PDF
    none13noIn this study, the microbiota of ready-to-eat surströmming from three Swedish producers were studied using a combined approach. The pH values of the samples ranged between 6.67±0.01 and 6.98±0.01, whereas their aw values were between 0.911±0.001 and 0.940±0.001. The acetic acid concentration was between 0.289±0.009 g/100 g and 0.556±0.036 g/100 g. Very low concentrations of lactic acid were measured. Viable counting revealed the presence of mesophilic aerobes, mesophilic lactobacilli and lactococci as well as halophilic lactobacilli and lactococci, coagulase-negative staphylococci, halophilic aerobes and anaerobes. Negligible counts for Enterobacteriaceae, Pseudomonadaceae and total eumycetes were observed, whereas no sulfite-reducing anaerobes were detected. Listeria monocytogenes and Salmonella spp. were absent in all samples. Multiplex real-time PCR revealed the absence of the bont/A, bont/B, bont/E, bont/F, and 4gyrB (CP) genes, which encode botulinic toxins, in all the samples analyzed. Metagenomic sequencing revealed the presence of a core microbiota dominated by Halanaerobium praevalens, Alkalibacterium gilvum, Carnobacterium, Tetragenococcus halophilus, Clostridiisalibacter, and Porphyromonadaceae. Psychrobacter celer, Ruminococcaceae, Marinilactibacillus psychrotolerans, Streptococcus infantis and Salinivibrio costicola were detected as minority OTUs. GC-MS analysis of volatile components revealed the massive presence of trimethylamine and sulfur compounds. Moreover, 1,2,4-trithiolane, phenols, ketones, aldehydes, alcohols, esters and long chain aliphatic hydrocarbons were also detected. The data obtained allowed pro-technological bacteria, which are well-adapted to saline environments, to be discovered for the first time. Further analyses are needed to better clarify the extent of the contribution of either the microbiota or autolytic enzymes of the fish flesh in the aroma definition.restrictedLuca Belleggia, Lucia Aquilanti, Ilario Ferrocino, Vesna Milanović, Cristiana Garofalo, Francesca Clementi, Luca Cocolin, Massimo Mozzon, Roberta Foligni, M. Naceur Haouet, Stefania Scuota, Marisa Framboas, Andrea OsimaniBelleggia, Luca; Aquilanti, Lucia; Ferrocino, Ilario; Milanovic, Vesna; Garofalo, Cristiana; Clementi, Francesca; Cocolin, Luca; Mozzon, Massimo; Foligni, Roberta; Naceur Haouet, M.; Scuota, Stefania; Framboas, Marisa; Osimani, Andre
    • 

    corecore