4,279 research outputs found
Agronomical and environmental performances of organic farming in the Seine watershed, France
This work suggests that Soil Surface Balance is a robust indicator to compare the performances of organic agriculture with those of conventional agriculture, even strictly following the rules of rational and optimised application of fertilisers. The results of long term nitrogen budget calculation brought us to seriously reconsider the relevance of the need to increase crop yields, and more broadly to reconsider cropping patterns and production systems. In terms of policy levers for mitigating nitrogen contamination of water resources, only the shift to organic farming provides a possible way to reconcile agricultural production and water quality.
Further, this view points out the need for specific measures to encourage more mixed farming approach to organic farming on a territorial basis, thus reversing a 50 years trend to regional specialization into either crop or livestock farming
Anthropogenic nitrogen autotrophy and heterotrophy of the world's watersheds: Past, present, and future trends
Anthropogenic nitrogen autotrophy of a territory is defined as the nitrogen flux associated with local production of harvested crops and grass consumed by livestock grazing (in kg N/km(2)/yr). Nitrogen heterotrophy is the nitrogen flux associated with local food and feed consumption by humans and domestic animals. These two summarizing characteristics (anthropogenic nitrogen autotrophy and heterotrophy (ANAH)) indicate the degree of anthropogenic perturbation of the nitrogen cycle by agriculture and human consumption: their balance value provides information on either the potential for commercial export or the need to import agricultural goods; in a watershed, their vector sum is related to the nitrogen flux delivered to the sea. These indicators were calculated for all the watersheds in the Global Nutrient Export from Watersheds (NEWS) database for 1970 and 2000, as well as for 2030 and 2050, according to Millennium Ecosystem Assessment scenarios. During this 30 year period, many watersheds shifted from relatively balanced situations toward either more autotrophic or more heterotrophic conditions. This trend is predicted to become more pronounced over the next 50 year
Scaling of Information in Turbulence
We propose a new perspective on Turbulence using Information Theory. We
compute the entropy rate of a turbulent velocity signal and we particularly
focus on its dependence on the scale. We first report how the entropy rate is
able to describe the distribution of information amongst scales, and how one
can use it to isolate the injection, inertial and dissipative ranges, in
perfect agreement with the Batchelor model and with a fBM model. In a second
stage, we design a conditioning procedure in order to finely probe the
asymmetries in the statistics that are responsible for the energy cascade. Our
approach is very generic and can be applied to any multiscale complex system.Comment: in Europhysics Letters, 201
N:P:Si nutrient export ratios and ecological consequences in coastal seas evaluated by the ICEP approach
The Indicator for Coastal Eutrophication Potential (ICEP) for river nutrient export of nitrogen, phosphorus, and silica at the global scale was first calculated from available measurement data. Positive values of ICEP indicate an excess of nitrogen and phosphorus over silica and generally coincide with eutrophication. The sign of ICEP based on measured nutrient fluxes was in good agreement with the corresponding one calculated from the Global-NEWS models for more than 5000 watersheds in the world. Calculated ICEP for the year 2050 based on Global NEWS data for the four Millennium Ecosystem Assessment scenarios show increasing values particularly in developing countries. For further evaluation of the ICEP at the outlet of the rivers of the world based on measurements, there is a need for additional determination silica fluxes and concentrations, which are scarcely documented
Cardiac re-synchronization therapy in a patient with isolated ventricular non-compaction: a case report.
Isolated ventricular non-compaction (IVNC) is a rare, congenital, unclassified cardiomyopathy characterized by prominent trabecular meshwork and deep recesses. Major clinical manifestations of IVNC are heart failure, atrial and ventricular arrhythmias, and thrombo-embolic events. We describe a case of a 69-year-old woman in whom the diagnosis of IVNC was discovered late, whereas former echocardiographic examinations were considered normal. She was known for systolic left ventricular dysfunction for 3 years and then became symptomatic (NYHA III). In the past, she suffered from multiple episodes of deep vein thrombosis and pulmonary embolism. Electrocardiogram revealed a wide QRS complex, and transthoracic echocardiography showed typical apical thickening of the left and right ventricular myocardial wall with two distinct layers. The ratio of non-compacted to compacted myocardium was >2:1. Cardiac MRI confirmed the echocardiographic images. Cerebral MRI revealed multiple ischaemic sequellae. In view of the persistent refractory, heart failure in medical treatment of patients with classical criteria for cardiac re-synchronization therapy, as well as the ventricular arrhythmias, a biventricular automatic intracardiac defibrillator (biventricular ICD) was implanted. The 2-year follow-up period was characterized by improvement of NYHA functional class from III to I and increasing in left ventricular function. We hereby present a case of IVNC with favourable outcome after biventricular ICD implantation. Cardiac re-synchronization therapy could be considered in the management of this pathology
Passive flow control study in a convoluted intake using Stereo Particle Image Velocimetry
The ability of vortex generators (VG) to reduce the unsteady distortion at the exit plane of an S-duct (AIP) is investigated. The 3 components of the velocity at the AIP were measured using a Stereo Particle Velocimetry system with high spatial resolution. This enabled an assessment of the synchronous swirl distortion at the duct exit. A total of nine VG cases have been investigated with a systematic variation of key design variables. Overall the VGs change the duct secondary flows and separation and are able to substantially restructure the flow field at the AIP. The pressure distortion could be reduced up to 50% and a reduction in pressure loss of 30% was achieved for the mean flow field. The VGs have a substantial influence on the unsteadiness of the flow field with a reduction in peak swirl unsteadiness of 61% and an overall reduction of unsteady swirl distortion of 67%. They also suppress the primary unsteady flow switching mechanism of the datum configuration which is associated with the oscillation of bulk and twin swirl regimes. Consequently, extreme events which leads to high swirl intensity are suppressed which lower by 45% the maximum swirl intensity for the VG cases
Robust seismic velocity change estimation using ambient noise recordings
We consider the problem of seismic velocity change estimation using ambient
noise recordings. Motivated by [23] we study how the velocity change estimation
is affected by seasonal fluctuations in the noise sources. More precisely, we
consider a numerical model and introduce spatio-temporal seasonal fluctuations
in the noise sources. We show that indeed, as pointed out in [23], the
stretching method is affected by these fluctuations and produces misleading
apparent velocity variations which reduce dramatically the signal to noise
ratio of the method. We also show that these apparent velocity variations can
be eliminated by an adequate normalization of the cross-correlation functions.
Theoretically we expect our approach to work as long as the seasonal
fluctuations in the noise sources are uniform, an assumption which holds for
closely located seismic stations. We illustrate with numerical simulations and
real measurements that the proposed normalization significantly improves the
accuracy of the velocity change estimation
- âŠ