292 research outputs found
Recommended from our members
Regioselective reactions of 3,4-pyridynes enabled by the aryne distortion model.
The pyridine heterocycle continues to play a vital role in the development of human medicines. More than 100 currently marketed drugs contain this privileged unit, which remains highly sought after synthetically. We report an efficient means to access di- and trisubstituted pyridines in an efficient and highly controlled manner using transient 3,4-pyridyne intermediates. Previous efforts to employ 3,4-pyridynes for the construction of substituted pyridines were hampered by a lack of regiocontrol or the inability to later manipulate an adjacent directing group. The strategy relies on the use of proximal halide or sulfamate substituents to perturb pyridyne distortion, which in turn governs regioselectivities in nucleophilic addition and cycloaddition reactions. After trapping of the pyridynes generated in situ, the neighbouring directing groups may be removed or exploited using versatile metal-catalysed cross-coupling reactions. This methodology now renders 3,4-pyridynes as useful synthetic building blocks for the creation of highly decorated derivatives of the medicinally privileged pyridine heterocycle
Palladium-catalyzed acetylation of arenes.
A simple method for the preparation of aryl methyl ketones is reported. The transformation involves the Pd-catalyzed coupling of an acyl anion equivalent, acetyltrimethylsilane, with aryl bromides to afford the corresponding acetylated arenes in synthetically useful yields. The methodology is tolerant of heterocycles and provides a new method for arene functionalization
Indole diterpenoid natural products as the inspiration for new synthetic methods and strategies.
Indole terpenoids comprise a large class of natural products with diverse structural topologies and a broad range of biological activities. Accordingly, indole terpenoids have and continue to serve as attractive targets for chemical synthesis. Many synthetic efforts over the past few years have focused on a subclass of this family, the indole diterpenoids. This minireview showcases the role indole diterpenoids have played in inspiring the recent development of clever synthetic strategies, and new chemical reactions
Recommended from our members
Nickel-catalyzed transamidation of aliphatic amide derivatives.
Transamidation, or the conversion of one amide to another, is a long-standing challenge in organic synthesis. Although notable progress has been made in the transamidation of primary amides, the transamidation of secondary amides has remained underdeveloped, especially when considering aliphatic substrates. Herein, we report a two-step approach to achieve the transamidation of secondary aliphatic amides, which relies on non-precious metal catalysis. The method involves initial Boc-functionalization of secondary amide substrates to weaken the amide C-N bond. Subsequent treatment with a nickel catalyst, in the presence of an appropriate amine coupling partner, then delivers the net transamidated products. The transformation proceeds in synthetically useful yields across a range of substrates. A series of competition experiments delineate selectivity patterns that should influence future synthetic design. Moreover, the transamidation of Boc-activated secondary amide derivatives bearing epimerizable stereocenters underscores the mildness and synthetic utility of this methodology. This study provides the most general solution to the classic problem of secondary amide transamidation reported to date
Cycloadditions of cyclohexynes and cyclopentyne.
We report the strategic use of cyclohexyne and the more elusive intermediate, cyclopentyne, as a tool for the synthesis of new heterocyclic compounds. Experimental and computational studies of a 3-substituted cyclohexyne are also described. The observed regioselectivities are explained by the distortion/interaction model
A two-step approach to achieve secondary amide transamidation enabled by nickel catalysis.
A long-standing challenge in synthetic chemistry is the development of the transamidation reaction. This process, which involves the conversion of one amide to another, is typically plagued by unfavourable kinetic and thermodynamic factors. Although some advances have been made with regard to the transamidation of primary amide substrates, secondary amide transamidation has remained elusive. Here we present a simple two-step approach that allows for the elusive overall transformation to take place using non-precious metal catalysis. The methodology proceeds under exceptionally mild reaction conditions and is tolerant of amino-acid-derived nucleophiles. In addition to overcoming the classic problem of secondary amide transamidation, our studies expand the growing repertoire of new transformations mediated by base metal catalysis
The First Total Synthesis of Dragmacidin D
The first total synthesis of the biologically significant bis-indole alkaloid dragmacidin D (5) has been achieved. Thermal and electronic modulation provides the key for a series of palladium-catalyzed Suzuki cross-coupling reactions that furnished the core structure of the complex guanidine- and aminoimidazole-containing dragmacidins. Following this crucial sequence, a succession of meticulously controlled final events was developed leading to the completion of the natural product
Development of an Enantiodivergent Strategy for the Total Synthesis of (+)- and (−)-Dragmacidin F from a Single Enantiomer of Quinic Acid
An enantiodivergent strategy for the total chemical synthesis of both (+)- and (−)-dragmacidin F beginning from a single enantiomer of quinic acid has been developed and successfully implemented. Although unique, the synthetic routes to these antipodes share a number of key features, including novel reductive isomerization reactions, Pd(II)-mediated oxidative carbocyclization reactions, halogen-selective Suzuki couplings, and high-yielding late-stage Neber rearrangements
- …