8 research outputs found
Activation of Orexin 1 Receptors in the Paraventricular Nucleus Contributes to the Development of Deoxycorticosterone Acetate-Salt Hypertension Through Regulation of Vasopressin
Salt-sensitivity is a major factor in the development of hypertension. The brain orexin system has been observed to play a role in numerous hypertensive animal models. However, orexin’s role in the pathology of salt-sensitive hypertension (SSH) remains to be adequately explored. We assessed the impact of orexin hyperactivity in the pathogenesis of the deoxycorticosterone acetate (DOCA) – salt rat model, specifically through modulation of Arginine Vasopressin (AVP). Adult male rats were separated into three groups: vehicle control, DOCA-salt, and DOCA-salt+OX1R-shRNA. DOCA-salt rats received subcutaneous implantation of a 21-day release, 75 mg DOCA pellet in addition to saline drinking water (1% NaCl and 0.2% KCl). DOCA-salt+OX1R-shRNA rats received bilateral microinjection of AAV2-OX1R-shRNA into the paraventricular nucleus (PVN) to knockdown function of the Orexin 1-Receptor (OX1R) within that area. Following 2-week to allow full transgene expression, a DOCA pellet was administered in addition to saline drinking solution. Vehicle controls received sham DOCA implantation but were given normal water. During the 3-week DOCA-salt or sham treatment period, mean arterial pressure (MAP) and heart rate (HR) were monitored utilizing tail-cuff plethysmography. Following the 3-week period, rat brains were collected for either PCR mRNA analysis, as well as immunostaining. Plasma samples were collected and subjected to ELISA analysis. In line with our hypothesis, OX1R expression was elevated in the PVN of DOCA-salt treated rats when compared to controls. Furthermore, following chronic knockdown of OX1R, the hypertension development normally induced by DOCA-salt treatment was significantly diminished in the DOCA-salt+OX1R-shRNA group. A concurrent reduction in PVN OX1R and AVP mRNA was observed in concert with the reduced blood pressure following AAV2-OX1R-shRNA treatment. Similarly, plasma AVP concentrations appeared to be reduced in the DOCA-salt+OX1R-shRNA group when compared to DOCA-salt rats. These results indicate that orexin signaling, specifically through the OX1R in the PVN are critical for the onset and maintenance of hypertension in the DOCA-salt model. This relationship is mediated, at least in part, through orexin activation of AVP producing neurons, and the subsequent release of AVP into the periphery. Our results outline a promising mechanism underlying the development of SSH through interactions with the brain orexin system
Activation of Orexin System Stimulates CaMKII Expression
Hyperactivity of the orexin system within the paraventricular nucleus (PVN) has been shown to contribute to increased sympathetic nerve activity (SNA) and blood pressure (BP) in rodent animals. However, the underlying molecular mechanisms remain unclear. Here, we test the hypothesis that orexin system activation stimulates calcium/calmodulin-dependent kinase II (CaMKII) expression and activation, and stimulation of CaMKII expressing PVN neurons increases SNA and BP. Real-time PCR and/or western blot were carried out to test the effect of orexin-A administration on CaMKII expression in the PVN of normal Sprague Dawley (SD) rats and orexin receptor 1 (OX1R) expressing PC12 cells. Immunostaining was performed to assess OX1R cellular localization in the PVN of SD rats as well as orexin-A treatment on CaMKII activation in cultured hypothalamic neurons. In vivo sympathetic nerve recordings were employed to test the impact of optogenetic stimulation of CaMKII-expressing PVN neurons on the renal SNA (RSNA) and BP. The results showed that intracerebroventricular injection of orexin-A into the SD rat increases mRNA expression of CaMKII subunits in the PVN. In addition, Orexin-A treatment increases CaMKII expression and its phosphorylation in OX1R-expressing PC12 cells. Furthermore, Orexin-A treatment increases CaMKII activation in cultured hypothalamic neurons from neonatal SD rats. Finally, optogenetic excitation of PVN CaMKII-expressing neurons results in robust increases in RSNA and BP in SD rats. Our results suggest that increased orexin system activity activates CaMKII expression in cardiovascular relevant regions, and this may be relevant to the downstream cardiovascular effects of CaMKII
Treatment With an Angiopoietin-1 Mimetic Peptide Improves Cognitive Outcome in Rats With Vascular Dementia
BACKGROUND AND PURPOSE: Vascular dementia (VaD) is a complex neurodegenerative disease affecting cognition and memory. There is a lack of approved pharmacological treatments specifically for VaD. In this study, we investigate the therapeutic effects of AV-001, a Tie2 receptor agonist, in middle-aged rats subjected to a multiple microinfarct (MMI) model of VaD.
METHODS: Male, 10-12 month-old, Wistar rats were employed. The following experimental groups were used: Sham, MMI, MMI+1 μg/Kg AV-001, MMI+3 μg/Kg AV-001, MMI+6 μg/Kg AV-001. AV-001 treatment was initiated at 1 day after MMI and administered once daily via intraperitoneal injection. An investigator blinded to the experimental groups conducted a battery of neuro-cognitive tests including modified neurological severity score (mNSS) test, novel object recognition test, novel odor recognition test, three chamber social interaction test, and Morris water maze test. Rats were sacrificed at 6 weeks after MMI.
RESULTS: There was no mortality observed after 1, 3, or 6 μg/Kg AV-001 treatment in middle-aged rats subjected to MMI. AV-001 treatment (1, 3, or 6 μg/Kg) does not significantly alter blood pressure or heart rate at 6 weeks after MMI compared to baseline values or the MMI control group. Treatment of MMI with 1 or 3 μg/Kg AV-001 treatment does not significantly alter body weight compared to Sham or MMI control group. While 6 μg/Kg AV-001 treated group exhibit significantly lower body weight compared to Sham and MMI control group, the weight loss is evident starting at 1 day after MMI when treatment was initiated and is not significantly different compared to its baseline values at day 0 or day 1 after MMI. AV-001 treatment significantly decreases serum alanine aminotransferase, serum creatinine, and serum troponin I levels compared to the MMI control group; however, all values are within normal range. MMI induces mild neurological deficits in middle-aged rats indicated by low mNSS scores (\u3c6 on a scale of 0-18). Compared to control MMI group, 1 μg/Kg AV-001 treatment group did not exhibit significantly different mNSS scores, while 3 and 6 μg/Kg AV-001 treatment induced significantly worse mNSS scores on days 21-42 and 14-42 after MMI, respectively. MMI in middle-aged rats induces significant cognitive impairment including short-term memory loss, long-term memory loss, reduced preference for social novelty and impaired spatial learning and memory compared to sham control rats. Rats treated with 1 μg/Kg AV-001 exhibit significantly improved short-term and long-term memory, increased preference for social novelty, and improved spatial learning and memory compared to MMI rats. Treatment with 3 μg/Kg AV-001 improves short-term memory and preference for social novelty but does not improve long-term memory or spatial learning and memory compared to MMI rats. Treatment with 6 μg/Kg AV-001 improves only long-term memory compared to MMI rats. Thus, 1 μg/Kg AV-001 treatment was selected as an optimal dose. Treatment of middle-aged rats subjected to MMI with 1 μg/Kg AV-001 significantly increases axon density, myelin density and myelin thickness in the corpus callosum, as well as increases synaptic protein expression, neuronal branching and dendritic spine density in the cortex, oligodendrocytes and oligodendrocyte progenitor cell number in the cortex and striatum and promotes neurogenesis in the subventricular zone compared to control MMI rats.
CONCLUSIONS: In this study, we present AV-001 as a novel therapeutic agent to improve cognitive function and reduce white matter injury in middle aged-rats subjected to a MMI model of VaD. Treatment of MMI with 1 μg/Kg AV-001 significantly improves cognitive function, and increases axon density, remyelination and neuroplasticity in the brain of middle-aged rats
Plasma Orexin A Level is Increased in Salt-Sensitive Hypertension
Accumulating evidence demonstrates that the brain orexin system plays a crucial role in the control of blood pressure and cardiovascular function. In addition, hyperactivity of central orexin system function has been implicated in the pathology of salt sensitive hypertension (SSH). However, whether or not peripheral orexin system activity is altered in SSH remains unknown. In this study, we compared plasma orexin A levels and adrenal orexin receptors including orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R) expression in Dahl salt-sensitive (Dahl S) rat, an animal model of SSH, under high salt diet with their normotensive Dahl S cohorts. 7-weekold male and age-matched female Dahl S rats were divided into two groups of each and were fed either normal diet (NS, 0.4% NaCl) or high salt diet (HS, 4%NaCl). Six weeks following different diet treatments, all rats were euthanized and their plasma orexin A levels were measured using ELISA. Their adrenal glands were collected and subjected to real time PCR for OX1R and OX2R mRNA measurements. The results showed that HS diet increased plasma orexin A levels in both male (HS: 6.97±0.98 vs. NS 4.34±0.95 pg/ml; n=3; p=0.053); and female (HS: 6.17±0.65 vs. NS: 3.65±0.15 pg/ml; n=4; *P\u3c0.05) rats. No significant difference was observed in orexin A level between male and female rats in both NS and HS groups. We therefore performed the rest of the experiments using female Dahl S rats. Real Time PCR results showed that OX1R mRNA level is increased by 3-fold (n=5; *P\u3c0.05) and OX2R mRNA level is increased by 1.9-fold (n=5; *P\u3c0.05) in HS diet treated rats compared to control rats. Immunohistochemistry assay showed that OX1R and OX2R are primarily expressed in the medulla of the adrenal gland and their expressions are co-localized with tyrosine hydroxylase, an enzyme that catalyzes the first and rate limiting step in the synthesis of catecholamines including norepinephrine. This result coupled with the evidence that adrenal and plasma norepinephrine levels are increased in HS loaded Dahl S rats suggests that increased orexin system activity in the adrenal gland may increase norepinephrine production and subsequent release, therefore contributing to the development of SSH. Further studies will be performed to investigate whether blockage of the adrenal orexin receptors will decrease norepinephrine level and prevent or attenuate SSH in Dahl S rats
TNFα Triggers an Augmented Inflammatory Response in Brain Neurons from Dahl Salt-Sensitive Rats Compared with Normal Sprague Dawley Rats
Tumor Necrosis Factor (TNF)-α is a proinflammatory cytokine (PIC) and has been implicated in a variety of illness including cardiovascular disease. The current study investigated the inflammatory response trigged by TNFα in both cultured brain neurons and the hypothalamic paraventricular nucleus (PVN), a key cardiovascular relevant brain area, of the Sprague Dawley (SD) rats. Our results demonstrated that TNFα treatment induces a dose- and time-dependent increase in mRNA expression of PICs including Interleukin (IL)-1β and Interleukin-6 (IL6); chemokines including C–C Motif Chemokine Ligand 5 (CCL5) and C–C Motif Chemokine Ligand 12 (CCL12), inducible nitric oxide synthase (iNOS), as well as transcription factor NF-kB in cultured brain neurons from neonatal SD rats. Consistent with this finding, immunostaining shows that TNFα treatment increases immunoreactivity of IL1β, CCL5, iNOS and stimulates activation or expression of NF-kB, in both cultured brain neurons and the PVN of adult SD rats. We further compared mRNA expression of the aforementioned genes in basal level as well as in response to TNFα challenge between SD rats and Dahl Salt-sensitive (Dahl-S) rats, an animal model of salt-sensitive hypertension. Dahl-S brain neurons presented higher baseline levels as well as greater response to TNFα challenge in mRNA expression of CCL5, iNOS and IL1β. Furthermore, central administration of TNFα caused significant higher response in CCL12 in the PVN of Dahl-S rats. The increased inflammatory response to TNFα in Dahl-S rats may be indicative of an underlying mechanism for enhanced pressor reactivity to salt intake in the Dahl-S rat model
Treatment of vascular dementia in female rats with AV-001, an Angiopoietin-1 mimetic peptide, improves cognitive function
BackgroundVascular dementia (VaD) is a complex neurodegenerative disorder. We previously found that treatment of VaD in middle-aged male rats subjected to multiple microinfarction (MMI) with AV-001, a Tie2 receptor agonist, significantly improves cognitive function. Age and sex affect the development and response of VaD to therapeutic intervention. Thus, the present study investigated the therapeutic effect of AV-001 on VaD in aged female rats subjected to MMI.MethodsFemale 18-month-old Wistar rats were subjected to MMI by injecting either 1,000 (low dose, LD-MMI) or 6,000 (high dose, HD-MMI) cholesterol crystals of size 70–100 μm into the right internal carotid artery. AV-001 (1 μg/Kg, i.p.) was administered once daily after MMI for 1 month, with treatment initiated 1 day after MMI. A battery of behavioral tests to examine sensorimotor and cognitive functions was performed at 21–28 days after MMI. All rats were sacrificed at 1 month after MMI.ResultsAged female rats subjected to LD-MMI exhibit severe neurological deficits, memory impairment, and significant white matter (WM) and oligodendrogenesis injury in the corpus callosum compared with control rats. HD-MMI in aged female rats induces significant anxiety- and depression-like behaviors, which were not detected in LD-MMI aged female rats. Also, HD-MMI induces significantly increased WM injury compared to LD-MMI. AV-001 treatment of LD-MMI and HD-MMI increases oligodendrogenesis, myelin and axon density in the corpus callosum and striatal WM bundles, promotes WM integrity and attenuates neurological and cognitive deficits. Additionally, both LD-MMI and HD-MMI rats exhibit a significant increase, while AV-001 significantly decreases the levels of inflammatory factors in the cerebrospinal fluid (CSF).ConclusionMMI reduces oligodendrogenesis, and induces demyelination, axonal injury and WM injury, and causes memory impairment, while HD-MMI induces increased WM injury and further depression-like behaviors compared to LD-MMI rats. AV-001 has a therapeutic effect on aged female rats with MMI by reducing WM damage and improving neuro-cognitive outcomes