7 research outputs found

    Deseadan of Moquegua, PerĂș.

    No full text
    24 p. : ill., maps ; 26 cm. "November 30, 2009." Includes bibliographical references (p. 22-24).Subsequent to our initial reports of the discovery of Deseadan fossils in southern PerĂș, we have obtained new data regarding the paleontology and geology of the upper member of the Moquegua Formation. These data include newly recovered fossil specimens and further analyses of those collected in our earlier field seasons. We have also obtained an ash directly from within the fossil-bearing units near the summit of Cerro Pan de AzĂșcar. Biotites from this Sugarloaf ash give an age estimate of 26.25 ± 0.10 Ma, thus supporting our previous suggestion that these fossil-bearing horizons are of late Oligocene age â€Ș(‬Deseadan South American Land Mammal Ageâ€Ș)‬ and removing our query regarding a possible early Miocene age. Most of the fossils are of notoungulates and most of these are trachytheriine mesotheriids. Remarkably, three distinct mesotheriid taxa appear to have been present in the Moquegua fauna, none of which are referable to the common Trachytherus alloxus of the nearby and at least partly contemporaneous Salla beds of Bolivia. Other fossils documented here include postcranial elements of the notohippid notoungulate, Moqueguahippus, a macraucheniid litoptern â€Ș(‬cf. Coniopterniumâ€Ș)‬, an osteoderm of an unnamed species of armadillo â€Ș(‬Dasypodidae, cf. Dasypodinaeâ€Ș)‬, and a claw of a phorusrhacid bird. We also describe a diminutive new hystricognath rodent, Sallamys quispea, sp. nov. It is similar to, but distinct from, S. pascuali of Salla. Indeed, despite the temporal and geographic proximity of Moquegua to Salla, none of the taxa from Moquegua that can be identified to species are known from Salla. Likewise, we have failed to find any dasypodids from Salla that have osteoderms like that described in this work. Thus, it is appears that distinctive paleogeographic and paleoenvironmental conditions in the late Oligocene led to a regional biotic differentiation for the Moquegua area of coastal PerĂș

    Chlorocyon phantasma, a late Eocene borhyaenoid (Mammalia, Metatheria, Sparassodonta) from the Los Helados locality, Andean Main Range, central Chile. (American Museum novitates, 0003-0082 ; no. 3918)

    No full text
    22 pages : illustrations (some color), map ; 26 cm.Sparassodont metatherians were the dominant terrestrial mammalian predators during South America's long Cenozoic isolation. This group's early fossil record is very poor, however, particularly for the late Eocene and early Oligocene. Here, we describe a new sparassodont, Chlorocyon phantasma, gen. et sp. nov., based on a specimen from Los Helados, a new locality within the Abanico Formation of the Andean Main Range of central Chile. New ⁎⁰Ar/ÂłâčAr dates at Los Helados bracketing the fossil-bearing level constrain the age of this specimen to 37-36 Ma (late Eocene), indicating that this new taxon likely pertains to the Mustersan South American Land Mammal "Age." Chlorocyon is the first Paleogene sparassodont reported from Chile and the first sparassodont described from the Abanico Formation. Distinctive features, including a p3 with an anterior edge that is more curved than the posterior edge and the lack of a hypoconulid on m4, suggest that Chlorocyon is a borhyaenoid closely related to Pharsophorus or Plesiofelis, although much smaller. Chlorocyon represents a welcome addition to the sparse record of late Eocene sparassodonts and indicates that the diversity of non-proborhyaenid borhyaenoids prior to the late Oligocene was greater than previously thought

    New leontiniid Notoungulata (Mammalia) from Chile and Argentina : comparative anatomy, character analysis, and phylogenetic hypotheses. (American Museum novitates, no. 3737)

    No full text
    64 p. : ill. (1 col.), map ; 26 cm.Herein we describe and name two new species of leontiniid notoungulates, one being the first known from Chile, the other from the Deseadan South American Land Mammal Age (SALMA) of Patagonia, Argentina. The Chilean leontiniid is from the lower horizons of the Cura-MallĂ­n Formation (Tcm1) at Laguna del Laja in the Andean Main Range of central Chile. This new species, Colpodon antucoensis, is distinguishable from Patagonian species of Colpodon by way of its smaller I2; larger I3 and P1; sharper, V-shaped snout; and squarer upper premolars. The holotype came from a horizon that is constrained below and above by 40Ar/39Ar ages of 19.53 ± 0.60 and 19.25 ± 1.22, respectively, suggesting an age of roughly 19.5 Ma, or a little older ( 19.8 Ma) when corrected for a revised age of the Fish Canyon Tuff standard. Either age is slightly younger than ages reported for the Colhuehuapian SALMA fauna at the Gran Barranca. Taxa from the locality of the holotype of C. antucoensis are few, but they (e.g., the mylodontid sloth, Nematherium, and a lagostomine chinchillid) also suggest a post-Colhuehuapian faunal age. The second leontiniid named in this paper has been known in the literature for over 75 years as Leontinia sp. Several specimens referable to this species were discovered at Pico Truncado (Deseadan SALMA) during the Field Museums first Marshall Field Expedition, led by Elmer Riggs in 1924. This “new” taxon, Elmerriggsia fieldia, is a small-bodied leontiniid, possessing grooved premolar protocones that lack intermediate lingual cingulae, but have well-developed labial cingulids on their lower molars. This new taxon is fairly common at Pico Truncado, in Santa Cruz, Argentina, but we have not encountered it at other localities. The character-taxon matrix that we constructed for this analysis differs from those previously developed for notoungulates by the substantially greater number of postcranial characters used (41). Colbertia magellanica was used as the outgroup in all analyses. Our initial phylogenetic analysis was limited to only taxa traditionally assigned to the Toxodontia. These included a dozen taxa traditionally considered to be leontiniids, two toxodontids, four notohippids, a homalodotheriid, and two isotemnids. The taxa traditionally classified as leontiniids formed a monophyletic group, in which V-shaped muzzle, caniniform i3, femur with medial suprapatellar ridge, and large wedge-shaped fibular facet of the calcaneum were unequivocal synapomorphies. Colpodon spp. nested within a clade that includes the “tropical” leontiniids, Taubatherium and Huilatherium. Toxodontids and notohippids formed a monophyletic group sister to the leontiniids, with these two clades forming a more inclusive clade that previously had been called the “advanced Toxodontia.” However, when five species of typotheres from three “families” were added to the analysis, the “notohippid” Eurygenium was identified as the nearest outgroup of leontiniids and an “advanced notohippid” plus toxodontid clade (nodes C + F). Unequivocal synapomorphies uniting these two nodes were robust calcanonavicular articulation (“reverse alternating tarsus” as evidenced by a distinct navicular facet on the calcaneum) and a distal radius with a styloid process. The presence of an entolophid fossettid in the lower molars and the downturned olecranon process of the ulna were equivocal synapomorphies for this clade. Though lacking the character states that diagnose a more exclusive “notohippid-toxodontid-leontiniid” clade, Eurygenium shared several unequivocal synapomorphies that unite it with these taxa. These include a well-formed fossette of upper molars formed by the posterior cingulum, absence of an entepicondylar foramen of the humerus, lack of a neck on the astragalus, a transversely elongated astragalar head, and absence of the “astragalar buttress” of the navicular. Unconventionally, the interatheriids used in the analysis (Federicoanaya and Protypotherium, both interatheriine interatheriids) formed the sister group to the taxa traditionally considered to be the “advanced Toxodontia.” Unequivocal synapomorphies uniting these interatheriids with the “advanced Toxodontia” are exclusively postcranial: tetradactyl manus, quadrate fibular facet of the calcaneum, calcaneonavicular contact (without well-formed facet on the calcaneum), and union of the groove for the tendon of the flexor hallucis longus with the astragalar trochlea. Steeply inclined ectal facets of the astragalus and calcaneum are equivocal synapomorphies (shared with Eurygenium, the notohippids, and toxodontids, but not leontiniids). Inclusion of postcranial characters in the phylogenetic analysis illustrates an otherwise undetectable conflict—that of homoplasy-homology discordance between dental and postcranial characters of interatheriine interatheriids (the postcranial skeleton of “notopithicine” interatheriids [or “basal interatheriids” of Hitz et al., 2006] remain unknown). This conflict does not simply represent an arcane point, but has relevance regarding reconstructing the interrelation-ships of several major groups of notoungulates. Other findings of this work include a northerly extension of the geographical range of Colpodon and a possible temporal extension beyond the Colhuehuapian SALMA. It appears that the fauna at Laguna del Laja is an important source of information regarding the faunal transition that occurred between Colhuehuapian and Santacrucian SALMA faunas
    corecore