397 research outputs found

    From nuclear structure to neutron stars

    Full text link
    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. As a demonstration, we show that the agreement between theoretical calculations of the charge form factor of 12C and the experimental data is excellent. Applying similar methods to isospin-asymmetric systems allows one to describe neutrons confined in an external potential and homogeneous neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.Comment: 14 pages, 8 figures, Proceedings of the International Nuclear Physics Conference (INPC), 2-7 June 2013, Firenze, Ital

    Quantum Monte Carlo calculations of symmetric nuclear matter

    Get PDF
    We present an accurate numerical study of the equation of state of nuclear matter based on realistic nucleon--nucleon interactions by means of Auxiliary Field Diffusion Monte Carlo (AFDMC) calculations. The AFDMC method samples the spin and isospin degrees of freedom allowing for quantum simulations of large nucleonic systems and can provide quantitative understanding of problems in nuclear structure and astrophysics.Comment: Final version published in the Phys. Rev. Let
    corecore