58 research outputs found

    Ferroptosis Hijacking by Mycobacterium tuberculosis

    Get PDF
    A recent study from Nature Communications reveals that Mycobacterium tuberculosis can hijack epigenetic machinery in host cells and induce host cell ferroptosis, which promotes pathogen pathogenicity and spread. These findings also suggest new therapeutic strategies to treat tuberculosis

    A Time and Place for Inhibiting Autophagy

    Get PDF
    Autophagy is an attractive therapeutic target in cancer. Successful autophagy-focused clinical intervention will require a detailed understanding of when and where autophagy is important during tumorigenesis. In this issue of Cancer Research, Khayati and colleagues use state-of-the-art genetically engineered mouse models to demonstrate that transient systemic inhibition of autophagy can irreversibly impair the growth of established lung tumors with a good tolerability in normal tissues, suggesting a therapeutic strategy for cancer treatment

    Hyperoxidized PRDX3 as a Specific Ferroptosis Marker

    Get PDF
    The lack of a reliable and specific marker for ferroptosis has hindered the advancement of treatments related to this cell death mechanism toward clinical application. A recent study published in Molecular Cell has identified hyperoxidized peroxiredoxin 3 (PRDX3) as a promising marker for ferroptosis, opening up new avenues for monitoring and targeting ferroptosis in disease treatment

    VHL Governs m6A Modification and PIK3R3 mRNA Stability in Clear Cell Renal Cell Carcinomas

    Get PDF
    N6-Methyladenosine (m6A), a prevalent posttranscriptional modification, plays an important role in cancer progression. Clear cell renal cell carcinoma (ccRCC) is chiefly associated with the loss of the von Hippel-Lindau (VHL) gene, encoding a component of the E3 ubiquitin ligase complex. In this issue of the JCI, Zhang and colleagues unveiled a function of VHL beyond its canonical role as an E3 ubiquitin ligase in regulating hypoxia-inducible factors (HIFs). It also governed m6A modification by orchestrating the assembly of m6A writer proteins METTL3 and METTL14, thereby stabilizing PIK3R3 mRNA. Mechanistically, PIK3R3 contributed to p85 ubiquitination, which restrained PI3K/AKT signaling and consequently impeded ccRCC growth in cell and mouse models. This discovery provides potential treatment targets in VHL-deficient ccRCCs

    Metabolic Cell Death in Cancer: Ferroptosis, Cuproptosis, Disulfidptosis, and Beyond

    Get PDF
    Cell death resistance represents a hallmark of cancer. Recent studies have identified metabolic cell death as unique forms of regulated cell death resulting from an imbalance in the cellular metabolism. This review discusses the mechanisms of metabolic cell death-ferroptosis, cuproptosis, disulfidptosis, lysozincrosis, and alkaliptosis-and explores their potential in cancer therapy. Our review underscores the complexity of the metabolic cell death pathways and offers insights into innovative therapeutic avenues for cancer treatment

    The Deubiquitinase ZRANB1 Is an E3 Ubiquitin Ligase for SLC7A11 and Regulates Ferroptotic Resistance

    Get PDF
    The dependency of cancer cells on iron increases their susceptibility to ferroptosis, thus providing new opportunities for patients with treatment-resistant tumors. However, we show that lipid peroxidation, a hallmark of ferroptosis, was found in various areas of patient samples, indicating the potential resistance of ferroptosis. Using whole deubiquitinases (DUBs) sgRNA screening, we found that loss of ZRANB1 confers cancer cell resistance to ferroptosis. Intriguingly, functional studies revealed that ZRANB1 ubiquitinates and represses SLC7A11 expression as an E3 ubiquitin ligase and that ZRANB1 inhibits glutathione (GSH) synthesis through SLC7A11 degradation, leading to elevated lipid peroxidation and ferroptosis. Deletion of the region (residues 463–584) abolishes the E3 activity of ZRANB1. Moreover, we show that ZRANB1 has lower expression in tumors, which is positively correlated with lipid peroxidation. Collectively, our results demonstrate the role of ZRANB1 in ferroptosis resistance and unveil mechanisms involving modulation of E3 ligase activity through an unconventional catalytic domain

    Identification of FIP200 interaction with the TSC1–TSC2 complex and its role in regulation of cell size control

    Get PDF
    FIP200 (focal adhesion kinase [FAK] family interacting protein of 200 kD) is a newly identified protein that binds to the kinase domain of FAK and inhibits its kinase activity and associated cellular functions. Here, we identify an interaction between FIP200 and the TSC1–TSC2 complex through FIP200 binding to TSC1. We found that association of FIP200 with the TSC1–TSC2 complex correlated with its ability to increase cell size and up-regulate S6 kinase phosphorylation but was not involved in the regulation of cell cycle progression. Conversely, knockdown of endogenous FIP200 by RNA interference reduced S6 kinase phosphorylation and cell size, which required TSC1 but was independent of FAK. Furthermore, overexpression of FIP200 reduced TSC1–TSC2 complex formation, although knockdown of endogenous FIP200 by RNA interference did not affect TSC1–TSC2 complex formation. Lastly, we showed that FIP200 is important in nutrient stimulation-induced, but not energy- or serum-induced, S6 kinase activation. Together, these results suggest a cellular function of FIP200 in the regulation of cell size by interaction with the TSC1–TSC2 complex

    Role of FIP200 in cardiac and liver development and its regulation of TNFα and TSC–mTOR signaling pathways

    Get PDF
    Focal adhesion kinase family interacting protein of 200 kD (FIP200) has been shown to regulate diverse cellular functions such as cell size, proliferation, and migration in vitro. However, the function of FIP200 in vivo has not been investigated. We show that targeted deletion of FIP200 in the mouse led to embryonic death at mid/late gestation associated with heart failure and liver degeneration. We found that FIP200 knockout (KO) embryos show reduced S6 kinase activation and cell size as a result of increased tuberous sclerosis complex function. Furthermore, FIP200 KO embryos exhibited significant apoptosis in heart and liver. Consistent with this, FIP200 KO mouse embryo fibroblasts and liver cells showed increased apoptosis and reduced c-Jun N-terminal kinase phosphorylation in response to tumor necrosis factor (TNF) α stimulation, which might be mediated by FIP200 interaction with apoptosis signal–regulating kinase 1 (ASK1) and TNF receptor–associated factor 2 (TRAF2), regulation of TRAF2–ASK1 interaction, and ASK1 phosphorylation. Together, our results reveal that FIP200 functions as a regulatory node to couple two important signaling pathways to regulate cell growth and survival during mouse embryogenesis
    • …
    corecore