4 research outputs found
Lessons Learned About Building an ASSERTive Community
One of our observations in this lessons learned paper is that there is underwhelming faculty development related to scholarship other than on how to submit and sometimes how to write proposals. This de facto service model misses everything outside of the proposal-writing process; which is the least important, but is often the most celebrated, rewarded, and supported phase. Inspired by national Centers for Teaching & Learning, and modeled after the emerging Communities of Transformation literature, we are piloting a Center for Transformative Research at Boise State University. The vision of our Center is to build and sustain an ASSERTive community -- for Aligning Stakeholders and Structures to Enable Research Transformation (ASSERT). Faculty members from across campus were recruited to participate as fellows to explore what it means to be a scholar and how to move a bold and transformative idea forward. To minimize the energy to apply, the application process included an Instagram post, Twitter response, and/or haiku. Fifteen faculty were selected for the cohort of fellows. To ensure university-wide accountability, a memorandum of understanding was signed by each fellow, as well as their Provost, Vice President for Research & Economic Development, College or School Dean, and Department Chair. Once signed, each fellow was asked to complete a survey and participate in an individual structured interview with the PI and co-PI. These allowed us to determine the specific needs of each fellow, providing validation or perhaps challenging our a priori observations of risk inhibitors at Boise State that prevent germination of bold ideas. By studying the fellows, we were able to look at what may inhibit them from taking risks – personal attributes and beliefs, and structural and cultural issues within their academic units, the university, and in their academic fields. Based on the survey results and individual structured interviews, programming was developed and tailored to the needs of the fellows. An off-campus retreat was held. In addition to the off-campus retreat, on-campus workshops were custom-made for the fellows and included: (a) how to germinate transformative ideas by no longer seeing ideas as precious; (b) how to become an effective collaborator by adapting the Toolbox Project; (c) how to move ideas forward by drawing on the game “Chutes & Ladders” where the chutes represent common obstacles and the ladders are shortcuts; (d) how to manage time at work, and in life; and (e) how to classify, understand, and know when and how to implement intentional versus emergent research strategies. As a culminating activity, the faculty then pitched their ideas to university and community leadership. In conjunction with this pitch event, an advocate was assigned to each fellow to help connect their ideas to future resources. From our motivation to our faculty application to our custom learning community, lessons learned will be shared via a lightning talk
Nautical Research Platform for Water-Bound Experiments
Conducting research in lakes and rivers requires large crews and heavy-duty equipment, making even simple tests more costly and time consuming. Newer research methods are evolving constantly as new technology enables more precise and accessible experiments to be conducted. The need for simple execution of water-bound experiments exists and must be addressed to aid our understanding of these environments. We at the Microgravity Undergraduate Research Team have taken our previous research in autonomous Unmanned Surface Vehicles (USVs) and applied our efforts to relieving this problem. Our current research aims to provide a universal platform for research and experiments to be conducted in lakes and rivers, where we can then expand our efforts to more broad applications. The design allows for remote-control navigation by one user and easy portability. To address precision in experimentation, we have integrated autonomous GPS waypoint navigation which removes user error in sensitive measurements. The most important factor in its design is modularity; the ability to accommodate a wide range of equipment for research. Our platform succeeds in making water-bound experiments more accessible and more precise for a multitude of potential applications
Water Adaptive Limber Locomotive Effector (WALL-E)
There are many celestial bodies in the Solar System that have the potential for harboring life such as the moons Europa and Enceladus; these worlds hide away vast oceans under thick layers of ice. The potential for these bodies to contain other lifeforms has piqued the interest of organizations on Earth, such as the National Aeronautics and Space Administration (NASA), as destinations for future missions. Because of the distances and relatively harsh conditions involved, Remotely Operated Vehicles (ROVs) would be sent on the initial missions to explore these worlds. The NASA Jet Propulsion Laboratory (JPL) has developed a remotely-operated Mini-Arm for use on an ROV. This mini arm would be used to explore the oceans of these distant worlds. However, it is in need of an end effector capable of manipulating objects of interest; this was the task of the Boise State University Microgravity Team. During the course of the 2018-2019 school year, the team designed and fabricated WALL-E as a flexible and dexterous solution to subsurface gripping. The design, degrees of freedom, and simple user interface allow the operator to easily manipulate samples of varying dimensions and geometries, akin to those potentially found on the aforementioned ocean worlds
The ZERO: The Zip-tiE RevOlver
The Boise State Microgravity team took part in the EVA Zip Tie Installer challenge. As a part of maintaining the International Space Station (ISS) until 2030, the National Aeronautics and Space Administration (NASA) are inquiring into different device solutions that can install zip-ties fully mechanically and repeatedly by astronauts aboard the ISS during EVA’s. This serves as a solution to the current use of metal wires which are wrapped around pipes and loose wires on the ISS.
The Zip-Tie Revolver (ZERO) was created to install zip-ties taking into account the astronaut’s limited dexterity and the goals of reusability with modular components. In order to address the difficulty of the many steps required to install a metal wire around pipes and loose wires, the ZERO was designed with a simple and streamlined operation to bolster effectiveness and usability on EVA’s. At its core, the ZERO is a spring loaded zip tie gun that can propel zip ties around different objects in a microgravity environment