30 research outputs found

    Closure Relations of Synchrotron Self-Compton in Afterglow stratified medium and Fermi-LAT Detected Gamma-Ray Bursts

    Full text link
    The Second Gamma-ray Burst Catalog (2FLGC) was announced by the Fermi Large Area Telescope (Fermi-LAT) Collaboration. It includes 29 bursts with photon energy higher than 10 GeV. Gamma-ray burst (GRB) afterglow observations have been adequately explained by the classic synchrotron forward-shock model, however, photon energies greater than 10 GeV from these transient events are challenging, if not impossible, to characterize using this afterglow model. Recently, the closure relations (CRs) of the synchrotron self-Compton (SSC) forward-shock model evolving in a stellar wind and homogeneous medium was presented to analyze the evolution of the spectral and temporal indexes of those bursts reported in 2FLGC. In this work, we provide the CRs of the same afterglow model, but evolving in an intermediate density profile (rk\propto {\rm r^{-k}}) with 0k2.5{\rm 0\leq k \leq2.5}, taking into account the adiabatic/radiative regime and with/without energy injection for any value of the electron spectral index. The results show that the current model accounts for a considerable subset of GRBs that cannot be interpreted in either stellar-wind or homogeneous afterglow SSC model. The analysis indicates that the best-stratified scenario is most consistent with k=0.5{\rm k=0.5} for no-energy injection and k=2.5{\rm k=2.5} for energy injection.Comment: 13 pages, 3 figure

    Polarization From A Radially Stratified Off-Axis GRB Outflow

    Full text link
    While the dominant radiation mechanism gamma-ray bursts (GRBs) remains a question of debate, synchrotron emission is one of the foremost candidates to describe the multi-wavelength afterglow observations. As such, it is expected that GRBs should present some degree of polarization across their evolution - presenting a feasible means of probing these bursts' energetic and angular properties. Although obtaining polarization data is difficult due to the inherent complexities regarding GRB observations, advances are being made, and theoretical modeling of synchrotron polarization is now more relevant than ever. In this manuscript, we present the polarization for a fiduciary model where the synchrotron forward-shock emission evolving in the radiative-adiabatic regime is described by a radially stratified off-axis outflow. This is parameterized with a power-law velocity distribution and decelerated in a constant-density and wind-like external environment. We apply this theoretical polarization model for selected bursts presenting evidence of off-axis afterglow emission, including the nearest orphan GRB candidates observed by the Neil Gehrels Swift Observatory and a few Gravitational Wave (GWs) events that could generate electromagnetic emission. In the case of GRB 170817A, we require the available polarimetric upper limits in radio wavelengths to constrain its magnetic field geometry.Comment: In submission. 18 pages, 7 figures, 3 table

    Afterglow Polarization from Off-Axis GRB Jets

    Full text link
    As we further our studies on Gamma-ray bursts (GRBs), both on theoretical models and observational tools, more and more options begin to open for exploration of its physical properties. As transient events primarily dominated by synchrotron radiation, it is expected that the synchrotron photons emitted by GRBs should present some degree of polarization throughout the evolution of the burst. Whereas observing this polarization can still be challenging due to the constraints on observational tools, especially for short GRBs, it is paramount that the groundwork is laid for the day we have abundant data. In this work, we present a polarization model linked with an off-axis spreading top-hat jet synchrotron scenario in a stratified environment with a density profile n(r)rkn(r)\propto r^ {-k}. We present this model's expected temporal polarization evolution for a realistic set of afterglow parameters constrained within the values observed in the GRB literature for four degrees of stratification k=0,1,1.5and2k=0,1,1.5 {\rm \, and\,} 2 and two magnetic field configurations with high extreme anisotropy. We apply this model and predict polarization from a set of GRBs exhibiting off-axis afterglow emission. In particular, for GRB 170817A, we use the available polarimetric upper limits to rule out the possibility of a extremely anisotropic configuration for the magnetic field.Comment: 17 pages, 3 tables, 6 figures. Accepted for publication in the Astrophysical Journal (ApJ

    Modeling Gamma-ray burst Afterglow observations with an Off-axis Jet emission

    Full text link
    Gamma-ray bursts (GRBs) are fascinating extragalactic objects. They represent a fantastic opportunity to investigate unique properties not exhibited in other sources. Multi-wavelength afterglow observations from some short- and long-duration GRBs reveal an atypical long-lasting emission that evolves differently from the canonical afterglow light curves favoring the off-axis emission. We present an analytical synchrotron afterglow scenario, and the hydrodynamical evolution of an off-axis top-hat jet decelerated in a stratified surrounding environment. The analytical synchrotron afterglow model is shown during the coasting, deceleration (off- and on-axis emission), and the post-jet-break decay phases, and the hydrodynamical evolution is computed by numerical simulations showing the time evolution of the Doppler factor, the half-opening angle, the bulk Lorentz factor, and the deceleration radius. We show that numerical simulations are in good agreement with those derived with our analytical approach. We apply the current synchrotron model and describe successfully the delayed non-thermal emission observed in a sample of long and short GRBs with evidence of off-axis emission. Furthermore, we provide constraints on the possible afterglow emission by requiring the multi-wavelength upper limits derived for the closest Swift-detected GRBs and promising gravitational-wave events.Comment: 36 pages, 16 figures, accepted for publication in Ap

    Galactic Gamma-Ray Diffuse Emission at TeV energies with HAWC Data

    Full text link
    The Galactic gamma-ray diffuse emission (GDE) is emitted by cosmic rays (CRs), ultra-relativistic protons and electrons, interacting with gas and electromagnetic radiation fields in the interstellar medium. Here we present the analysis of TeV diffuse emission from a region of the Galactic Plane over the range in longitude of l[43,73]l\in[43^\circ,73^\circ], using data collected with the High Altitude Water Cherenkov (HAWC) detector. Spectral, longitudinal and latitudinal distributions of the TeV diffuse emission are shown. The radiation spectrum is compatible with the spectrum of the emission arising from a CR population with an "index" similar to that of the observed CRs. When comparing with the \texttt{DRAGON} \textit{base model}, the HAWC GDE flux is higher by about a factor of two. Unresolved sources such as pulsar wind nebulae and TeV halos could explain the excess emission. Finally, deviations of the Galactic CR flux from the locally measured CR flux may additionally explain the difference between the predicted and measured diffuse fluxes
    corecore