26 research outputs found

    Shared genetic aetiology between cognitive functions and physical and mental health in UK Biobank (N=112 151) and 24 GWAS consortia.

    Full text link
    Causes of the well-documented association between low levels of cognitive functioning and many adverse neuropsychiatric outcomes, poorer physical health and earlier death remain unknown. We used linkage disequilibrium regression and polygenic profile scoring to test for shared genetic aetiology between cognitive functions and neuropsychiatric disorders and physical health. Using information provided by many published genome-wide association study consortia, we created polygenic profile scores for 24 vascular-metabolic, neuropsychiatric, physiological-anthropometric and cognitive traits in the participants of UK Biobank, a very large population-based sample (N=112?151). Pleiotropy between cognitive and health traits was quantified by deriving genetic correlations using summary genome-wide association study statistics and to the method of linkage disequilibrium score regression. Substantial and significant genetic correlations were observed between cognitive test scores in the UK Biobank sample and many of the mental and physical health-related traits and disorders assessed here. In addition, highly significant associations were observed between the cognitive test scores in the UK Biobank sample and many polygenic profile scores, including coronary artery disease, stroke, Alzheimer's disease, schizophrenia, autism, major depressive disorder, body mass index, intracranial volume, infant head circumference and childhood cognitive ability. Where disease diagnosis was available for UK Biobank participants, we were able to show that these results were not confounded by those who had the relevant disease. These findings indicate that a substantial level of pleiotropy exists between cognitive abilities and many human mental and physical health disorders and traits and that it can be used to predict phenotypic variance across samples.Molecular Psychiatry advance online publication, 26 January 2016; doi:10.1038/mp.2015.225

    Countering Extremists on Social Media:Challenges for Strategic Communication and Content Moderation

    Get PDF
    Extremist exploitation of social media platforms is an important regulatory question for civil society, government, and the private sector. Extremists exploit social media for a range of reasons-from spreading hateful narratives and propaganda to financing, recruitment, and sharing operational information. Policy responses to this question fit under two headings, strategic communication and content moderation. At the center of both of these policy responses is a calculation about how best to limit audience exposure to extremist narratives and maintain the marginality of extremist views, while being conscious of rights to free expression and the appropriateness of restrictions on speech. This special issue on "Countering Extremists on Social Media: Challenges for Strategic Communication and Content Moderation" focuses on one form of strategic communication, countering violent extremism. In this editorial we discuss the background and effectiveness of this approach, and introduce five articles which develop multiple strands of research into responses and solutions to extremist exploitation of social media. We conclude by suggesting an agenda for future research on how multistakeholder initiatives to challenge extremist exploitation of social media are conceived, designed, and implemented, and the challenges these initiatives need to surmount

    De novo variants in the RNU4-2 snRNA cause a frequent neurodevelopmental syndrome

    Get PDF
    Around 60% of individuals with neurodevelopmental disorders (NDD) remain undiagnosed after comprehensive genetic testing, primarily of protein-coding genes1. Large genome-sequenced cohorts are improving our ability to discover new diagnoses in the non-coding genome. Here, we identify the non-coding RNA RNU4-2 as a syndromic NDD gene. RNU4-2 encodes the U4 small nuclear RNA (snRNA), which is a critical component of the U4/U6.U5 tri-snRNP complex of the major spliceosome2. We identify an 18 bp region of RNU4-2 mapping to two structural elements in the U4/U6 snRNA duplex (the T-loop and Stem III) that is severely depleted of variation in the general population, but in which we identify heterozygous variants in 115 individuals with NDD. Most individuals (77.4%) have the same highly recurrent single base insertion (n.64_65insT). In 54 individuals where it could be determined, the de novo variants were all on the maternal allele. We demonstrate that RNU4-2 is highly expressed in the developing human brain, in contrast to RNU4-1 and other U4 homologs. Using RNA-sequencing, we show how 5’ splice site usage is systematically disrupted in individuals with RNU4-2 variants, consistent with the known role of this region during spliceosome activation. Finally, we estimate that variants in this 18 bp region explain 0.4% of individuals with NDD. This work underscores the importance of non-coding genes in rare disorders and will provide a diagnosis to thousands of individuals with NDD worldwide
    corecore