110 research outputs found
The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry-BLASTPol: Performance and results from the 2012 Antarctic flight
The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) is a suborbital mapping experiment, designed to study the role played by magnetic fields in the star formation process. BLASTPol observes polarized light using a total power instrument, photolithographic polarizing grids, and an achromatic half-wave plate to modulate the polarization signal. During its second flight from Antarctica in December 2012, BLASTPol made degree scale maps of linearly polarized dust emission from molecular clouds in three wavebands, centered at 250, 350, and 500 μm. The instrumental performance was an improvement over the 2010 BLASTPol flight, with decreased systematics resulting in a higher number of confirmed polarization vectors. The resultant dataset allows BLASTPol to trace magnetic fields in star-forming regions at scales ranging from cores to entire molecular cloud complexes
The Simons Observatory: Cryogenic Half Wave Plate Rotation Mechanism for the Small Aperture Telescopes
We present the requirements, design and evaluation of the cryogenic
continuously rotating half-wave plate (CHWP) for the Simons Observatory (SO).
SO is a cosmic microwave background (CMB) polarization experiment at Parque
Astron\'{o}mico Atacama in northern Chile that covers a wide range of angular
scales using both small (0.42 m) and large (6 m) aperture telescopes. In
particular, the small aperture telescopes (SATs) focus on large angular scales
for primordial B-mode polarization. To this end, the SATs employ a CHWP to
modulate the polarization of the incident light at 8~Hz, suppressing
atmospheric noise and mitigating systematic uncertainties that would
otherwise arise due to the differential response of detectors sensitive to
orthogonal polarizations. The CHWP consists of a 505 mm diameter achromatic
sapphire HWP and a cryogenic rotation mechanism, both of which are cooled down
to 50 K to reduce detector thermal loading. Under normal operation the
HWP is suspended by a superconducting magnetic bearing and rotates with a
constant 2 Hz frequency, controlled by an electromagnetic synchronous motor.
The rotation angle is detected through an angular encoder with a noise level of
0.07. During a cooldown, the rotor is held in
place by a grip-and-release mechanism that serves as both an alignment device
and a thermal path. In this paper we provide an overview of the SO SAT CHWP:
its requirements, hardware design, and laboratory performance.Comment: 19 pages, 21 figures, submitted to RS
The relation between the column density structures and the magnetic field orientation in the Vela C molecular complex
We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondence between (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or "ridges", where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or "nests", where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region
The POLARBEAR-2 and Simons Array Focal Plane Fabrication Status
We present on the status of POLARBEAR-2 A (PB2-A) focal plane fabrication.
The PB2-A is the first of three telescopes in the Simon Array (SA), which is an
array of three cosmic microwave background (CMB) polarization sensitive
telescopes located at the POLARBEAR (PB) site in Northern Chile. As the
successor to the PB experiment, each telescope and receiver combination is
named as PB2-A, PB2-B, and PB2-C. PB2-A and -B will have nearly identical
receivers operating at 90 and 150 GHz while PB2-C will house a receiver
operating at 220 and 270 GHz. Each receiver contains a focal plane consisting
of seven close-hex packed lenslet coupled sinuous antenna transition edge
sensor bolometer arrays. Each array contains 271 di-chroic optical pixels each
of which have four TES bolometers for a total of 7588 detectors per receiver.
We have produced a set of two types of candidate arrays for PB2-A. The first we
call Version 11 (V11) and uses a silicon oxide (SiOx) for the transmission
lines and cross-over process for orthogonal polarizations. The second we call
Version 13 (V13) and uses silicon nitride (SiNx) for the transmission lines and
cross-under process for orthogonal polarizations. We have produced enough of
each type of array to fully populate the focal plane of the PB2-A receiver. The
average wirebond yield for V11 and V13 arrays is 93.2% and 95.6% respectively.
The V11 arrays had a superconducting transition temperature (Tc) of 452 +/- 15
mK, a normal resistance (Rn) of 1.25 +/- 0.20 Ohms, and saturations powers of
5.2 +/- 1.0 pW and 13 +/- 1.2 pW for the 90 and 150 GHz bands respectively. The
V13 arrays had a superconducting transition temperature (Tc) of 456 +/-6 mK, a
normal resistance (Rn) of 1.1 +/- 0.2 Ohms, and saturations powers of 10.8 +/-
1.8 pW and 22.9 +/- 2.6 pW for the 90 and 150 GHz bands respectively
Cross-correlation of CMB polarization lensing with High-z submillimeter Herschel-ATLAS galaxies
We report a 4.8σ measurement of the cross-correlation signal between the cosmic microwave background (CMB) lensing convergence reconstructed from measurements of the CMB polarization made by the Polarbear experiment and the infrared-selected galaxies of the Herschel-ATLAS survey. This is the first measurement of its kind
Recommended from our members
The Simons Observatory: Science goals and forecasts
The Simons Observatory (SO) is a new cosmic microwave background experiment
being built on Cerro Toco in Chile, due to begin observations in the early
2020s. We describe the scientific goals of the experiment, motivate the design,
and forecast its performance. SO will measure the temperature and polarization
anisotropy of the cosmic microwave background in six frequency bands: 27, 39,
93, 145, 225 and 280 GHz. The initial configuration of SO will have three
small-aperture 0.5-m telescopes (SATs) and one large-aperture 6-m telescope
(LAT), with a total of 60,000 cryogenic bolometers. Our key science goals are
to characterize the primordial perturbations, measure the number of
relativistic species and the mass of neutrinos, test for deviations from a
cosmological constant, improve our understanding of galaxy evolution, and
constrain the duration of reionization. The SATs will target the largest
angular scales observable from Chile, mapping ~10% of the sky to a white noise
level of 2 K-arcmin in combined 93 and 145 GHz bands, to measure the
primordial tensor-to-scalar ratio, , at a target level of .
The LAT will map ~40% of the sky at arcminute angular resolution to an expected
white noise level of 6 K-arcmin in combined 93 and 145 GHz bands,
overlapping with the majority of the LSST sky region and partially with DESI.
With up to an order of magnitude lower polarization noise than maps from the
Planck satellite, the high-resolution sky maps will constrain cosmological
parameters derived from the damping tail, gravitational lensing of the
microwave background, the primordial bispectrum, and the thermal and kinematic
Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle
polarization signal to measure the tensor-to-scalar ratio. The survey will also
provide a legacy catalog of 16,000 galaxy clusters and more than 20,000
extragalactic sources
The Simons Observatory microwave SQUID multiplexing detector module design
Advances in cosmic microwave background (CMB) science depend on increasing
the number of sensitive detectors observing the sky. New instruments deploy
large arrays of superconducting transition-edge sensor (TES) bolometers tiled
densely into ever larger focal planes. High multiplexing factors reduce the
thermal loading on the cryogenic receivers and simplify their design. We
present the design of focal-plane modules with an order of magnitude higher
multiplexing factor than has previously been achieved with TES bolometers. We
focus on the novel cold readout component, which employs microwave SQUID
multiplexing (mux). Simons Observatory will use 49 modules containing
60,000 bolometers to make exquisitely sensitive measurements of the CMB. We
validate the focal-plane module design, presenting measurements of the readout
component with and without a prototype detector array of 1728
polarization-sensitive bolometers coupled to feedhorns. The readout component
achieves a yield and a 910 multiplexing factor. The median white noise
of each readout channel is 65 . This impacts the
projected SO mapping speed by , which is less than is assumed in the
sensitivity projections. The results validate the full functionality of the
module. We discuss the measured performance in the context of SO science
requirements, which are exceeded.Comment: Accepted to The Astrophysical Journa
- …