9 research outputs found
Synthesis, microstructure, and electrophysical properties of surface-modified polyantimonic acid nanoparticles
This work has considered the modern ideas on the mechanism of surface modification for used nanodispersed inorganic modifiers with an acidic surface, which significantly affect the hydrate and transport properties of polymeric proton-conducting electrolytes. Authors have proposed an alternative approach consisting of the synthesis of new composite nanoscale systems characterized by high ionic conductivity and developed a method for obtaining composite materials with "core-shell" structure based on an inorganic proton conductor (polyantimonic acid) modified with silicon oxide. The surface morphology of the synthesized nanoparticles has been studied by transmission electron microscopy, and their sizes have been determined. The data on frequency dependence of the electrical impedance are presented and the behavior of the active and reactive components of the impedance and conductivity in the frequency range from 100 Hz to 1 MHz has been analyzed. An equivalent electrical circuit simulating the impedance dispersion for obtained composites with "core-shell" structure based on PAA and SiO2 has been proposed
Magnetic and structural properties of barium hexaferrite BaFe12O19 from various growth techniques
Barium hexaferrite powder samples with grains in the m-range were obtained from solid-state sintering, and crystals with sizes up to 5 mm grown from PbO, Na2CO3, and BaB2O4 fluxes, respectively. Carbonate and borate fluxes provide the largest and structurally best crystals at significantly lower growth temperatures of 1533 K compared to flux-free synthesis (1623 K). The maximum synthesis temperature can be further reduced by the application of PbO-containing fluxes (down to 1223 K upon use of 80 at % PbO), however, Pb-substituted crystals Ba1-xPbxFe12O19 with Pb contents in the range of 0.23(2) x 0.80(2) form, depending on growth temperature and flux PbO content. The degree of Pb-substitution has only a minor influence on unit cell and magnetic parameters, although the values for Curie temperature, saturation magnetization, as well as the coercivity of these samples are significantly reduced in comparison with those from samples obtained from the other fluxes. Due to the lowest level of impurities, the samples from carbonate flux show superior quality compared to materials obtained using other methods
GROWTH DEVICE, CRYSTAL GROWTH AND CHARACTERIZATION OF ALEXANDRITE
Alexandrite is beryllium aluminate Al2O3•BeO doped with minor levels of chromophores, Cr2O3 being the major one. The engineering application of single crystals of synthetic alexandrite is currently limited to active elements of tunable IR-lasers for remote sensing and medicine. In the design of the mechanical components of any crystal-growth systems, especially high-temperature systems, there are two basic requirements: long-term stability of the dimensions of the heating equipment; and uniform rotary and translational motion of the crystal over a wide speed range. Accordingly, it is assumed for the heating system that the heater and internal screens are made of tungsten and the heater is cylindrical. In the present work, authors describe a new high-temperature furnace for a crystal-growth system, with new designs of the heater, screens, copper leads, and the lid. To eliminate the sealed input, which is the primary source of non-uniform crystal motion, the kinematic system, including the motor, is placed in a volume connected to the furnace
Physicochemical, Functional, and Technological Properties of Protein Hydrolysates Obtained by Microbial Fermentation of Broiler Chicken Gizzards
Fermentation is an economical method for obtaining protein hydrolysates. The purpose of the scientific research was to perform a comprehensive analysis of the physicochemical, technological, and functional properties of protein hydrolysates obtained by microbial fermentation. The research results showed that hydrolysates fermented with propionic acid bacteria and bifidobacteria have better physicochemical and technological indicators compared to the control sample. Significant increases in water-holding and fat-holding capacities (by 1.8–2.1 times and 1.5–2.5 times, respectively), as well as fat-emulsifying ability (by 12.8–29.8%) in experimental samples were found. Hydrolysates obtained by fermentation effectively inhibit the growth of Escherichia coli and Staphylococcus aureus. The thermal analysis showed a sufficiently high-thermal stability of the obtained protein hydrolysates. In hydrolysates fermented by bacterial culture, the removal of physico-mechanical and osmotically bound moisture occurred at temperatures of 110 °C and 115 °C, respectively, and in whey protein hydrolysate at a temperature of 100 °C. The release of chemically bound moisture was observed at a temperature of 170 °C for fermented hydrolysates and at 155 °C for the control sample. The results proved that fermented protein products are characterized by high functional properties, antioxidant and antimicrobial activity, and can be used as natural food additives and preservatives
Physicochemical, Functional, and Technological Properties of Protein Hydrolysates Obtained by Microbial Fermentation of Broiler Chicken Gizzards
Fermentation is an economical method for obtaining protein hydrolysates. The purpose of the scientific research was to perform a comprehensive analysis of the physicochemical, technological, and functional properties of protein hydrolysates obtained by microbial fermentation. The research results showed that hydrolysates fermented with propionic acid bacteria and bifidobacteria have better physicochemical and technological indicators compared to the control sample. Significant increases in water-holding and fat-holding capacities (by 1.8–2.1 times and 1.5–2.5 times, respectively), as well as fat-emulsifying ability (by 12.8–29.8%) in experimental samples were found. Hydrolysates obtained by fermentation effectively inhibit the growth of Escherichia coli and Staphylococcus aureus. The thermal analysis showed a sufficiently high-thermal stability of the obtained protein hydrolysates. In hydrolysates fermented by bacterial culture, the removal of physico-mechanical and osmotically bound moisture occurred at temperatures of 110 °C and 115 °C, respectively, and in whey protein hydrolysate at a temperature of 100 °C. The release of chemically bound moisture was observed at a temperature of 170 °C for fermented hydrolysates and at 155 °C for the control sample. The results proved that fermented protein products are characterized by high functional properties, antioxidant and antimicrobial activity, and can be used as natural food additives and preservatives
Effects of Microbial Transglutaminase on Technological, Rheological, and Microstructural Indicators of Minced Meat with the Addition of Plant Raw Materials
The aim of the study was to analyse the effects of transglutaminase on the physicochemical, technological, rheological, and microstructural indicators of minced meat with the addition of plant raw materials. The formulations of minced meat from beef trimming, hemp protein, and flax flour were optimized in terms of biological value and optimal content of essential amino acids. The addition of plant components in amounts greater than 18% caused an increase in the content of protein, fat, and ash in the minced samples. The rheological properties of minced meat samples without enzyme treatment changed depending on the proportion of plant raw materials. When the content of the flax flour was increased, the minimum ultimate shear stress and viscosity were observed, while the maximum values for these indicators were achieved in samples containing about 15% hemp protein, as well as in samples without plant additives. When adding transglutaminase to the formulation, increases in the ultimate shear stress and viscosity were proven for all combined minced samples. The combined minces, containing flax flour, had a more plastic structure and the lowest modulus of elasticity, while minces including 14% hemp protein or more than 87% meat components were identical to the control samples in terms of deformation and elasticity. In enzyme-treated minces, the plasticity of the samples reduced while density and elasticity increased. Transglutaminase treatment contributed to the formation of optimal technological properties of combined minces. Microstructural analysis showed the intermolecular bonds between protein particles in combined minced samples with the addition of enzymes. The research results have demonstrated the effectiveness of using transglutaminase in the composition of combined minced meat for the formation of a homogeneous and dense system with the necessary technological and rheological properties
The Stromal Vascular Fraction From Fat Tissue in the Treatment of Osteochondral Knee Defect: Case Report
In this study we applied autologous fat tissue stromal vascular fraction (SVF) cells in combination with microfracturing technique in a 36-year-old man with an osteochondral lesion of the medial femoral condyle 8 months after the injury. Cell material was generated by fat tissue liposuction from the anterior abdominal wall with subsequent extraction of the SVF and injected through a mini-arthrotomy portal with subsequent fibrin sealant fixation. The follow-up period was 2 years. Clinical score improved from 23 to 96 according to IKDC and from 10 to 90 according to EQ-VAS at 24 months follow-up. Magnetic resonance imaging (MRI) before the surgery revealed an osteochondral lesion with development of significant trabecular edema that remained unchanged for 6 months despite conservative treatment. MRI 1 and 2 years after the surgery showed the recovery of the damaged cartilage thickness with somewhat uneven structure and a decrease in the trabecular edema of the femoral condyle. The use of SVF cells with fibrin sealant fixation might be a promising approach in the treatment of osteochondral joint lesions. Further studies are required