122 research outputs found
Implementing NGSS Engineering Disciplinary Core Ideas in Middle School Science Classrooms: Results from the Field
With the inclusion of engineering disciplinary core ideas (DCIs), the Next Generation Science Standards (NGSS) position engineering as a new priority in K–12 science classrooms. This paper reports findings from the implementation of SLIDER, a problem-based learning 8th grade physical science curriculum that integrates engineering and physical science core ideas. As a culminating engineering design challenge, the SLIDER curriculum asks students to apply their understanding of energy, motion, and forces to design an automatic braking system for a robotic truck. The paper describes the curriculum and synthesizes findings from an array of data sources including student design interviews, written design recommendations, engineering notebooks, pre- and post-assessments, and teacher interviews to address two research questions: (1) To what extent and in what ways do students participating in the SLIDER curriculum engage in NGSS engineering DCIs: defining problems, developing solutions, and optimizing solutions? (2) To what extent and in what ways do students draw upon their understanding of science concepts as they engage in engineering design? Findings indicate variations in the degree to which students participating in the SLIDER curriculum engaged across the three NGSS engineering DCIs, with students generally demonstrating competency with regard to identifying and delimiting the engineering problem (ETS1.A) and, to varying degrees, developing solutions (ETS1.B) but experiencing more challenges engaging in the optimization of design solutions (ETS1.C). Findings also illustrate the degree to which students were able to apply their knowledge of relevant physical science core ideas (e.g., friction, force) as they developed and communicated their solutions. Implications of the findings for instruction, curriculum development, and assessment are discussed
A CD-based courseware package for the teaching and consolidating of geological field skills
This article explores a CD-based courseware package for the teaching and consolidating of geological field skills used for the interpretation of folding sequences in deformed rocks, focusing on examples from Anglesey in North Wales. The article briefly considers the advantages and disadvantages of virtual field work and then discusses the rationale, structure, development and production of the CD-ROM courseware package
Drivers for emerging issues in animal and plant health.
The history of agriculture includes many animal and plant disease events that have had major consequences for the sector, as well as for humans. At the same time, human activities beyond agriculture have often driven the emergence of diseases. The more that humans expand the footprint of the global population, encroach into natural habitats, alter these habitats to extract resources and intensify food production, as well as move animals, people and commodities along with the pathogens they carry, the greater the potential for pathogens and pests to spread and for infection to emerge or re-emerge. While essential to human well-being, producing food also plays a major role in disease dynamics. The risk of emergence of pests and pathogens has increased as a consequence of global changes in the way food is produced, moved and consumed. Climate change is likely to increase pressure on the availability of food and provide newly suitable conditions for invasive pests and pathogens. Human population displacements due to economic, political and humanitarian crises represent another set of potential drivers for emerging issues. The overlapping drivers of plant, animal and human disease emergence and environmental changes point towards the concept of 'One Health'. This paradigm underlines the urgent need to understand the influence of human behaviour and incorporate this understanding into our approach to emerging risks. For this, we face two major challenges. One is cultural; the second is methodological. We have to look at systems not under the narrow view of specific hazards but with a wider approach to system dynamics, and consider a broad spectrum of potential outcomes in terms of risk. In addition, we have to make sense of the vast amounts of data that are available in the modern age. This paper aims to help in preparing for the cultural and methodological shifts needed in our approach to emerging risks
Skunk River Review Fall 1995, Vol 7
https://openspace.dmacc.edu/skunkriver/1016/thumbnail.jp
- …