154 research outputs found

    The influence of solid/liquid separation techniques on the sugar yield in two-step dilute acid hydrolysis of softwood followed by enzymatic hydrolysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two-step dilute acid hydrolysis of softwood, either as a stand-alone process or as pretreatment before enzymatic hydrolysis, is considered to result in higher sugar yields than one-step acid hydrolysis. However, this requires removal of the liquid between the two steps. In an industrial process, filtration and washing of the material between the two steps is difficult, as it should be performed at high pressure to reduce energy demand. Moreover, the application of pressure leads to more compact solids, which may affect subsequent processing steps. This study was carried out to investigate the influence of pressing the biomass, in combination with the effects of not washing the material, on the sugar yield obtained from two-step dilute acid hydrolysis, with and without subsequent enzymatic digestion of the solids.</p> <p>Results</p> <p>Washing the material between the two acid hydrolysis steps, followed by enzymatic digestion, resulted in recovery of 96% of the mannose and 81% of the glucose (% of the theoretical) in the liquid fraction, regardless of the choice of dewatering method (pressing or vacuum filtration). Not washing the solids between the two acid hydrolysis steps led to elevated acidity of the remaining solids during the second hydrolysis step, which resulted in lower yields of mannose, 85% and 74% of the theoretical, for the pressed and vacuum-filtered slurry, respectively, due to sugar degradation. However, this increase in acidity resulted in a higher glucose yield (94.2%) from pressed slurry than from filtered slurry (77.6%).</p> <p>Conclusion</p> <p>Pressing the washed material between the two acid hydrolysis steps had no significant negative effect on the sugar yields of the second acid hydrolysis step or on enzymatic hydrolysis. Not washing the material resulted in a harsher second acid hydrolysis step, which caused greater degradation of the sugars during subsequent acid hydrolysis of the solids, particularly in case of the vacuum-filtered solids. However, pressing in combination with not washing the material between the two steps enhanced the sugar yield of the enzymatic digestion step. Hence, it is suggested that the unwashed slurry be pressed to as high a dry matter content as possible between the two acid hydrolysis stages in order to achieve high final sugar yields.</p

    Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low.</p> <p>Results</p> <p>Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS) combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS) unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS), resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L) did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases.</p> <p>Conclusions</p> <p>Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and second-generation processes also increases the ethanol concentration, resulting in a reduction in the cost of the distillation step, thus improving the process economics.</p

    Influence of different SSF conditions on ethanol production from corn stover at high solids loadings

    Get PDF
    In this study, three different kinds of simultaneous saccharification and fermentation (SSF) of washed pretreated corn stover with water-insoluble solids (WIS) content of 20% were investigated to find which one resulted in highest ethanol yield at high-solids loadings. The different methods were batch SSF, prehydrolysis followed by batch SSF and fed-batch SSF. Batch-SSF resulted in an ethanol yield of 75–76% and an ethanol concentration of 53 g/L. Prehydrolysis prior to batch SSF did not improve the ethanol yield compared with batch SSF. Fed-batch SSF, on the other hand, increased the yield, independent of the feeding conditions used (79–81%, 57–60 g/L). If the initial amount of solids during fed-batch SSF was lowered, the yield could be improved to some extent. When decreasing the enzyme dosage, the greatest decrease in yield was seen in the fed-batch mode (75%), while lower or the same yield was seen in batch mode with and without prehydrolysis (73%). This resulted in similar ethanol yields in all methods. However, the residence time to achieve the final ethanol yield was shorter using fed-batch. This shows that fed-batch can be a better alternative also at a lower enzyme loading

    Impact of dual temperature profile in dilute acid hydrolysis of spruce for ethanol production

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The two-step dilute acid hydrolysis (DAH) of softwood is costly in energy demands and capital costs. However, it has the advantage that hydrolysis and subsequent removal of hemicellulose-derived sugars can be carried out under conditions of low severity, resulting in a reduction in the level of sugar degradation products during the more severe subsequent steps of cellulose hydrolysis. In this paper, we discuss a single-step DAH method that incorporates a temperature profile at two levels. This profile should simulate the two-step process while removing its major disadvantage, that is, the washing step between the runs, which leads to increased energy demand.</p> <p>Results</p> <p>The experiments were conducted in a reactor with a controlled temperature profile. The total dry matter content of the hydrolysate was up to 21.1% w/w, corresponding to a content of 15.5% w/w of water insoluble solids. The highest measured glucose yield, (18.3 g glucose per 100 g dry raw material), was obtained after DAH cycles of 3 min at 209°C and 6 min at 211°C with 1% H<sub>2</sub>SO<sub>4</sub>, which resulted in a total of 26.3 g solubilized C6 sugars per 100 g dry raw material. To estimate the remaining sugar potential, enzymatic hydrolysis (EH) of the solid fraction was also performed. EH of the solid residue increased the total level of solubilized C6 sugars to a maximum of 35.5 g per 100 g dry raw material when DAH was performed as described above (3 min at 210°C and 2 min at 211°C with 1% H<sub>2</sub>SO<sub>4</sub>).</p> <p>Conclusion</p> <p>The dual-temperature DAH method did not yield decisively better results than the single-temperature, one-step DAH. When we compared the results with those of earlier studies, the hydrolysis performance was better than with the one-step DAH but not as well as that of the two-step, single-temperature DAH. Additional enzymatic hydrolysis resulted in lower levels of solubilized sugars compared with other studies on one-step DAH and two-step DAH followed by enzymatic hydrolysis. A two-step steam pretreatment with EH gave rise to a considerably higher sugar yield in this study.</p

    Ethanol production from mixtures of wheat straw and wheat meal

    Get PDF
    Background: Bioethanol can be produced from sugar-rich, starch-rich (first generation; 1G) or lignocellulosic (second generation; 2G) raw materials. Integration of 2G ethanol with 1G could facilitate the introduction of the 2G technology. The capital cost per ton of fuel produced would be diminished and better utilization of the biomass can be achieved. It would, furthermore, decrease the energy demand of 2G ethanol production and also provide both 1G and 2G plants with heat and electricity. In the current study, steam-pretreated wheat straw (SPWS) was mixed with presaccharified wheat meal (PWM) and converted to ethanol in simultaneous saccharification and fermentation (SSF). Results: Both the ethanol concentration and the ethanol yield increased with increasing amounts of PWM in mixtures with SPWS. The maximum ethanol yield (99% of the theoretical yield, based on the available C6 sugars) was obtained with a mixture of SPWS containing 2.5% water-insoluble solids (WIS) and PWM containing 2.5% WIS, resulting in an ethanol concentration of 56.5 g/L. This yield was higher than those obtained with SSF of either SPWS (68%) or PWM alone (91%). Conclusions: Mixing wheat straw with wheat meal would be beneficial for both 1G and 2G ethanol production. However, increasing the proportion of WIS as wheat straw and the possibility of consuming the xylose fraction with a pentose-fermenting yeast should be further investigated

    Storage and handling of pretreated lignocellulose affects the redox chemistry during subsequent enzymatic saccharification

    Get PDF
    The decomposition of lignocellulose in nature, as well as when used as feedstock in industrial settings, takes place in a dynamic system of biotic and abiotic reactions. In the present study, the impact of abiotic reactions during the storage of pretreated lignocellulose on the efficiency of subsequent saccharification was investigated. Abiotic decarboxylation was higher in steam-pretreated wheat straw (SWS, up till 1.5% CO2) than in dilute-acid-catalysed steam-pretreated forestry residue (SFR, up till 3.2% CO2) which could be due to higher iron content in SFR and there was no significant CO2 production in warm-water-washed slurries. Unwashed slurries rapidly consumed O2 during incubation at 50\ua0\ub0C; the behaviour was more dependent on storage conditions in case of SWS than SFR slurries. There was a pH drop in the slurries which did not correlate with acetic acid release. Storage of SWS under aerobic conditions led to oxidation of the substrate and reduced the extent of enzymatic saccharification by Cellic\uae CTec3. Catalase had no effect on the fractional conversion of the aerobically stored substrate, suggesting that the lower fractional conversion was due to reduced activity of the lytic polysaccharide monooxygenase component during saccharification. The fractional conversion of SFR was low in all cases, and cellulose hydrolysis ceased before the first sampling point. This was possibly due to excessive pretreatment of the forest residues. The conditions at which pretreated lignocellulose are stored after pretreatment significantly influenced the extent and kind of abiotic reactions that take place during storage. This in turn influenced the efficiency of subsequent saccharification. Pretreated substrates for laboratory testing must, therefore, be stored in a manner that minimizes abiotic oxidation to ensure that the properties of the substrate resemble those in an industrial setting, where pretreated lignocellulose is fed almost directly into the saccharification vessel.[Figure not available: see fulltext.]

    Pretreatment for biorefineries : A review of common methods for efficient utilisation of lignocellulosic materials

    Full text link
    The implementation of biorefineries based on lignocellulosic materials as an alternative to fossil-based refineries calls for efficient methods for fractionation and recovery of the products. The focus for the biorefinery concept for utilisation of biomass has shifted, from design of more or less energy-driven biorefineries, to much more versatile facilities where chemicals and energy carriers can be produced. The sugar-based biorefinery platform requires pretreatment of lignocellulosic materials, which can be very recalcitrant, to improve further processing through enzymatic hydrolysis, and for other downstream unit operations. This review summarises the development in the field of pretreatment (and to some extent, of fractionation) of various lignocellulosic materials. The number of publications indicates that biomass pretreatment plays a very important role for the biorefinery concept to be realised in full scale. The traditional pretreatment methods, for example, steam pretreatment (explosion), organosolv and hydrothermal treatment are covered in the review. In addition, the rapidly increasing interest for chemical treatment employing ionic liquids and deep-eutectic solvents are discussed and reviewed. It can be concluded that the huge variation of lignocellulosic materials makes it difficult to find a general process design for a biorefinery. Therefore, it is difficult to define "the best pretreatment" method. In the end, this depends on the proposed application, and any recommendation of a suitable pretreatment method must be based on a thorough techno-economic evaluation

    Pretreatment: The key to efficient utilization of lignocellulosic materials

    Full text link
    Second-generation ethanol production from various lignocellulosic materials based on enzymatic hydrolysis of cellulose has moved from research in lab scale to pilot- and demo scale but has not yet reached commercial scale. One of the crucial process steps is the pretreatment of the biomass, which has as primary aim to make the biomass accessible to enzymatic attack, as it has a large impact on all the other steps in the process. Several pretreatment methods have been developed, comprising methods working at low pH, i.e., acid based, at medium pH (without addition of catalysts), or at high pH, i.e., with a base as catalyst. Many methods result in high sugar yields, above 90% of theoretical for agricultural residues while more recalcitrant materials like hardwood, and especially softwood, require dilute-acid pretreatment to reach high sugar yields. However, most studies on pretreatment have been assessed by enzymatic hydrolysis at low solids content and high enzyme dosages. The various pretreatment methods need in the future to be reassessed at more industrial-like conditions considering the whole integrated process taking into consideration the influence on all process steps. In this review, various pretreatment methods are discussed and how assessment should be performed to reach optimal conditions. (C) 2012 Elsevier Ltd. All rights reserved
    • …
    corecore