2 research outputs found

    Predicting the web length and layers in a wound roll

    Get PDF
    The length of web in a wound roll is one mark of roll quality. The available web length in a roll is a concern for many who process webs and those who convert webs. There are algorithms that estimate the length of web and layers in a wound roll based on simple geometry and inputs of inside and outside radius and web thickness. If webs were infinitely stiff in the machine and out-of-plane directions such calculations could be accurate but this is not the case. Webs deform as the result of winder operating conditions such as winding tension and the contact pressures and stresses due to winding. Length calculations based on geometry will err as a result of web deformation in the length and radial directions. Webs are generally subject to tension during transport through process machines, the apparent deformed web length will vary with transport tension. The mission of this paper is to describe means by which the available deformed web length and the number of layers in a wound roll can be accurately predicted. The accuracy of the predictions will be verified by winding trials in the laboratory. The winding trials will demonstrate the levels of accuracy that can be realized on laboratory and production machines.Mechanical and Aerospace Engineerin

    Web length creep in wound rolls

    Get PDF
    For convenience, webs are stored in wound rolls. The available web length in a wound roll is one mark of roll quality and a concern for many who process and convert webs. Elastic winding models have proven very precise at estimating the number of layers, the web length wound into a roll, and the residual stresses in the roll at the time of winding. Wound rolls can spend long periods of time in storage, where controlling the environment is cost-prohibitive. As many webs are viscoelastic on some time scale, the residual stresses due to winding will result in creep during storage. The changes in web length due to creep result in web process errors and quality loss, including registration errors and camber webs for example. This publication will focus on the development of a viscoelastic winding model to predict these changes in web length due to creep in a wound roll. The viscoelastic model predicts the tangential stress relaxation and radial creep due to winding residual stresses from a fully viscoelastic orthotropic material behavior. A spunned-meltblown-spunned (SMS) web and a low-density polyethylene (LDPE) web are taken as examples of viscoelastic webs. Their viscoelastic properties are systematically characterized using creep experiments. The results of the model show good agreement with winding and storage experiments for both webs. Finally, webs often do not creep uniformly across their width. An example of this non-uniform creep will be explored.Mechanical and Aerospace Engineerin
    corecore