1,142 research outputs found

    Replacement of Maize/Soybean Meal Concentrate by High Moisture Maize Grain Plus Wholeseed Soybean Silage for Cattle

    Get PDF
    Ensiling high moisture maize grain with wholeseed soybean can increase quality of silage, mainly in relation to protein and energy (Jobim et al., 2002) working as concentrate. This fact contributes to reduced use of concentrate and costs for milk and beef production, and costs related to grain storage on the farms. The objective of this study was to evaluate the nutritive value of high moisture maize grain plus wholeseed soybean silage through partial and total digestibility in cattle

    Obstructive sleep apnea in acute respiratory failure

    Get PDF

    Densely Entangled Financial Systems

    Full text link
    In [1] Zawadoski introduces a banking network model in which the asset and counter-party risks are treated separately and the banks hedge their assets risks by appropriate OTC contracts. In his model, each bank has only two counter-party neighbors, a bank fails due to the counter-party risk only if at least one of its two neighbors default, and such a counter-party risk is a low probability event. Informally, the author shows that the banks will hedge their asset risks by appropriate OTC contracts, and, though it may be socially optimal to insure against counter-party risk, in equilibrium banks will {\em not} choose to insure this low probability event. In this paper, we consider the above model for more general network topologies, namely when each node has exactly 2r counter-party neighbors for some integer r>0. We extend the analysis of [1] to show that as the number of counter-party neighbors increase the probability of counter-party risk also increases, and in particular the socially optimal solution becomes privately sustainable when each bank hedges its risk to at least n/2 banks, where n is the number of banks in the network, i.e., when 2r is at least n/2, banks not only hedge their asset risk but also hedge its counter-party risk.Comment: to appear in Network Models in Economics and Finance, V. Kalyagin, P. M. Pardalos and T. M. Rassias (editors), Springer Optimization and Its Applications series, Springer, 201

    Apparent digestibility of insect protein meals for rainbow trout

    Get PDF
    Insect meals are considered to be promising future ingredients for aquaculture feeds. In past feeding trials in rainbow trout, insect meals were included in diets only on the basis of their nutrients content and energy density without taking into account their biological availability due to the lack of their digestible values. Apparent digestibility (ADC) provides good indication of the bioavailability of nutrients and energy thus providing rational basis for the correct inclusion of feedstuffs. The aim of this research was to assess, in an in vivo trial on rainbow trout, the ADC of five full fat insect meals: one Tenebrio molitor (TM), two Hermetia illucens obtained through two different process (HI1 and HI2), one Musca domestica (MD), and one Alphitobius diaperinus (AD). Fish were fed a high-quality reference diet (R) and test diets obtained mixing the R diet with each of the test ingredients at a ratio of 70:30. Diets contained 1% celite as inert marker. Fish were fed to visual satiety twice a day and faecal samples collected using a continuous automatic device. Faeces were freeze dried and frozen (-20 \ub0C) until analyses. The ADC of dry matter, crude protein and ether extract of each insect meal diet were calculated. ADC for dry matter varied between 70.07 (HI1) and 80.85 (TM). ADC for protein was above 84% in all treatments and resulted the highest in MD, TM and AD treatments. Ether extract apparent digestibility significantly differed among diets with the highest value reported for TM treatment. All treatments reported values higher than 96%. Observed differences could be due to the insect species and meal treatment but in general, tested insect meals were highly digestible for rainbow trout. The results from this research could be useful to optimize the diet formulation

    Development of high-gain gaseous photomultipliers for the visible spectral range

    Full text link
    We summarize the development of visible-sensitive gaseous photomultipliers, combining a semitransparent bi-alkali photocathode with a state-of-the-art cascaded electron multiplier. The latter has high photoelectron collection efficiency and a record ion blocking capability. We describe in details the system and methods of photocathode production and characterization, their coupling with the electron multiplier and the gaseous-photomultiplier operation and characterization in a continuous mode. We present results on the properties of laboratory-produced K2_2CsSb, Cs3_3Sb and Na2_2KSb photocathodes and report on their stability and QE in gas; K2_2CsSb photocathodes yielded QE values in Ar/CH4_4(95/5) above 30% at wavelengths of 360-400 nm. The novel gaseous photomultiplier yielded stable operation at gains of 105^5, in continuous operation mode, in 700 Torr of this gas; its sensitivity to single photons was demonstrated. Other properties are described. The successful detection of visible light with this gas-photomultiplier pave ways towards further development of large-area sealed imaging detectors, of flat geometry, insensitive to magnetic fields, which might have significant impact on light detection in numerous fields.Comment: 22 pages, 12 figures, for submission to JINS

    Nanodiamonds-induced effects on neuronal firing of mouse hippocampal microcircuits

    Get PDF
    Fluorescent nanodiamonds (FND) are carbon-based nanomaterials that can efficiently incorporate optically active photoluminescent centers such as the nitrogen-vacancy complex, thus making them promising candidates as optical biolabels and drug-delivery agents. FNDs exhibit bright fluorescence without photobleaching combined with high uptake rate and low cytotoxicity. Focusing on FNDs interference with neuronal function, here we examined their effect on cultured hippocampal neurons, monitoring the whole network development as well as the electrophysiological properties of single neurons. We observed that FNDs drastically decreased the frequency of inhibitory (from 1.81 Hz to 0.86 Hz) and excitatory (from 1.61 Hz to 0.68 Hz) miniature postsynaptic currents, and consistently reduced action potential (AP) firing frequency (by 36%), as measured by microelectrode arrays. On the contrary, bursts synchronization was preserved, as well as the amplitude of spontaneous inhibitory and excitatory events. Current-clamp recordings revealed that the ratio of neurons responding with AP trains of high-frequency (fast-spiking) versus neurons responding with trains of low-frequency (slow-spiking) was unaltered, suggesting that FNDs exerted a comparable action on neuronal subpopulations. At the single cell level, rapid onset of the somatic AP ("kink") was drastically reduced in FND-treated neurons, suggesting a reduced contribution of axonal and dendritic components while preserving neuronal excitability.Comment: 34 pages, 9 figure

    Experimental Observation of Energy Modulation in Electron Beams Passing Through Terahertz Dielectric Wakefield Structures

    Full text link
    We report observation of a strong wakefield induced energy modulation in an energy-chirped electron bunch passing through a dielectric-lined waveguide. This modulation can be effectively converted into a spatial modulation forming micro-bunches with a periodicity of 0.5 - 1 picosecond, hence capable of driving coherent THz radiation. The experimental results agree well with theoretical predictions.Comment: v3. Reviewers' suggestions incorporated. Accepted by PR

    THGEM operation in Ne and Ne/CH4

    Full text link
    The operation of Thick Gaseous Electron Multipliers (THGEM) in Ne and Ne/CH4 mixtures, features high multiplication factors at relatively low operation potentials, in both single- and double-THGEM configurations. We present some systematic data measured with UV-photons and soft x-rays, in various Ne mixtures. It includes gain dependence on hole diameter and gas purity, photoelectron extraction efficiency from CsI photocathodes into the gas, long-term gain stability and pulse rise-time. Position resolution of a 100x100 mm^2 X-rays imaging detector is presented. Possible applications are discussed.Comment: Submitted to JINST, 25 pages, 33 figure
    • …
    corecore