1,142 research outputs found
Replacement of Maize/Soybean Meal Concentrate by High Moisture Maize Grain Plus Wholeseed Soybean Silage for Cattle
Ensiling high moisture maize grain with wholeseed soybean can increase quality of silage, mainly in relation to protein and energy (Jobim et al., 2002) working as concentrate. This fact contributes to reduced use of concentrate and costs for milk and beef production, and costs related to grain storage on the farms. The objective of this study was to evaluate the nutritive value of high moisture maize grain plus wholeseed soybean silage through partial and total digestibility in cattle
Densely Entangled Financial Systems
In [1] Zawadoski introduces a banking network model in which the asset and
counter-party risks are treated separately and the banks hedge their assets
risks by appropriate OTC contracts. In his model, each bank has only two
counter-party neighbors, a bank fails due to the counter-party risk only if at
least one of its two neighbors default, and such a counter-party risk is a low
probability event. Informally, the author shows that the banks will hedge their
asset risks by appropriate OTC contracts, and, though it may be socially
optimal to insure against counter-party risk, in equilibrium banks will {\em
not} choose to insure this low probability event.
In this paper, we consider the above model for more general network
topologies, namely when each node has exactly 2r counter-party neighbors for
some integer r>0. We extend the analysis of [1] to show that as the number of
counter-party neighbors increase the probability of counter-party risk also
increases, and in particular the socially optimal solution becomes privately
sustainable when each bank hedges its risk to at least n/2 banks, where n is
the number of banks in the network, i.e., when 2r is at least n/2, banks not
only hedge their asset risk but also hedge its counter-party risk.Comment: to appear in Network Models in Economics and Finance, V. Kalyagin, P.
M. Pardalos and T. M. Rassias (editors), Springer Optimization and Its
Applications series, Springer, 201
Apparent digestibility of insect protein meals for rainbow trout
Insect meals are considered to be promising future ingredients for aquaculture feeds. In past feeding trials in rainbow trout, insect meals were included in diets only on the basis of their nutrients content and energy density without taking into account their biological availability due to the lack of their digestible values. Apparent digestibility (ADC) provides good indication of the bioavailability of nutrients and energy thus providing rational basis for the correct inclusion of feedstuffs. The aim of this research was to assess, in an in vivo trial on rainbow trout, the ADC of five full fat insect meals: one Tenebrio molitor (TM), two Hermetia illucens obtained through two different process (HI1 and HI2), one Musca domestica (MD), and one Alphitobius diaperinus (AD). Fish were fed a high-quality reference diet (R) and test diets obtained mixing the R diet with each of the test ingredients at a ratio of 70:30. Diets contained 1% celite as inert marker. Fish were fed to visual satiety twice a day and faecal samples collected using a continuous automatic device. Faeces were freeze dried and frozen (-20 \ub0C) until analyses. The ADC of dry matter, crude protein and ether extract of each insect meal diet were calculated. ADC for dry matter varied between 70.07 (HI1) and 80.85 (TM). ADC for protein was above 84% in all treatments and resulted the highest in MD, TM and AD treatments. Ether extract apparent digestibility significantly differed among diets with the highest value reported for TM treatment. All treatments reported values higher than 96%. Observed differences could be due to the insect species and meal treatment but in general, tested insect meals were highly digestible for rainbow trout. The results from this research could be useful to optimize the diet formulation
Development of high-gain gaseous photomultipliers for the visible spectral range
We summarize the development of visible-sensitive gaseous photomultipliers,
combining a semitransparent bi-alkali photocathode with a state-of-the-art
cascaded electron multiplier. The latter has high photoelectron collection
efficiency and a record ion blocking capability. We describe in details the
system and methods of photocathode production and characterization, their
coupling with the electron multiplier and the gaseous-photomultiplier operation
and characterization in a continuous mode. We present results on the properties
of laboratory-produced KCsSb, CsSb and NaKSb photocathodes and
report on their stability and QE in gas; KCsSb photocathodes yielded QE
values in Ar/CH(95/5) above 30% at wavelengths of 360-400 nm. The novel
gaseous photomultiplier yielded stable operation at gains of 10, in
continuous operation mode, in 700 Torr of this gas; its sensitivity to single
photons was demonstrated. Other properties are described. The successful
detection of visible light with this gas-photomultiplier pave ways towards
further development of large-area sealed imaging detectors, of flat geometry,
insensitive to magnetic fields, which might have significant impact on light
detection in numerous fields.Comment: 22 pages, 12 figures, for submission to JINS
Nanodiamonds-induced effects on neuronal firing of mouse hippocampal microcircuits
Fluorescent nanodiamonds (FND) are carbon-based nanomaterials that can
efficiently incorporate optically active photoluminescent centers such as the
nitrogen-vacancy complex, thus making them promising candidates as optical
biolabels and drug-delivery agents. FNDs exhibit bright fluorescence without
photobleaching combined with high uptake rate and low cytotoxicity. Focusing on
FNDs interference with neuronal function, here we examined their effect on
cultured hippocampal neurons, monitoring the whole network development as well
as the electrophysiological properties of single neurons. We observed that FNDs
drastically decreased the frequency of inhibitory (from 1.81 Hz to 0.86 Hz) and
excitatory (from 1.61 Hz to 0.68 Hz) miniature postsynaptic currents, and
consistently reduced action potential (AP) firing frequency (by 36%), as
measured by microelectrode arrays. On the contrary, bursts synchronization was
preserved, as well as the amplitude of spontaneous inhibitory and excitatory
events. Current-clamp recordings revealed that the ratio of neurons responding
with AP trains of high-frequency (fast-spiking) versus neurons responding with
trains of low-frequency (slow-spiking) was unaltered, suggesting that FNDs
exerted a comparable action on neuronal subpopulations. At the single cell
level, rapid onset of the somatic AP ("kink") was drastically reduced in
FND-treated neurons, suggesting a reduced contribution of axonal and dendritic
components while preserving neuronal excitability.Comment: 34 pages, 9 figure
Experimental Observation of Energy Modulation in Electron Beams Passing Through Terahertz Dielectric Wakefield Structures
We report observation of a strong wakefield induced energy modulation in an
energy-chirped electron bunch passing through a dielectric-lined waveguide.
This modulation can be effectively converted into a spatial modulation forming
micro-bunches with a periodicity of 0.5 - 1 picosecond, hence capable of
driving coherent THz radiation. The experimental results agree well with
theoretical predictions.Comment: v3. Reviewers' suggestions incorporated. Accepted by PR
THGEM operation in Ne and Ne/CH4
The operation of Thick Gaseous Electron Multipliers (THGEM) in Ne and Ne/CH4
mixtures, features high multiplication factors at relatively low operation
potentials, in both single- and double-THGEM configurations. We present some
systematic data measured with UV-photons and soft x-rays, in various Ne
mixtures. It includes gain dependence on hole diameter and gas purity,
photoelectron extraction efficiency from CsI photocathodes into the gas,
long-term gain stability and pulse rise-time. Position resolution of a 100x100
mm^2 X-rays imaging detector is presented. Possible applications are discussed.Comment: Submitted to JINST, 25 pages, 33 figure
- …