127 research outputs found

    Divide-and-Rule: Self-Supervised Learning for Survival Analysis in Colorectal Cancer

    Full text link
    With the long-term rapid increase in incidences of colorectal cancer (CRC), there is an urgent clinical need to improve risk stratification. The conventional pathology report is usually limited to only a few histopathological features. However, most of the tumor microenvironments used to describe patterns of aggressive tumor behavior are ignored. In this work, we aim to learn histopathological patterns within cancerous tissue regions that can be used to improve prognostic stratification for colorectal cancer. To do so, we propose a self-supervised learning method that jointly learns a representation of tissue regions as well as a metric of the clustering to obtain their underlying patterns. These histopathological patterns are then used to represent the interaction between complex tissues and predict clinical outcomes directly. We furthermore show that the proposed approach can benefit from linear predictors to avoid overfitting in patient outcomes predictions. To this end, we introduce a new well-characterized clinicopathological dataset, including a retrospective collective of 374 patients, with their survival time and treatment information. Histomorphological clusters obtained by our method are evaluated by training survival models. The experimental results demonstrate statistically significant patient stratification, and our approach outperformed the state-of-the-art deep clustering methods

    APACHE III outcome prediction in patients admitted to the intensive care unit after liver transplantation: a retrospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Acute Physiology and Chronic Health Evaluation (APACHE) III prognostic system has not been previously validated in patients admitted to the intensive care unit (ICU) after orthotopic liver transplantation (OLT). We hypothesized that APACHE III would perform satisfactorily in patients after OLT</p> <p>Methods</p> <p>A retrospective cohort study was performed. Patients admitted to the ICU after OLT between July 1996 and May 2008 were identified. Data were abstracted from the institutional APACHE III and liver transplantation databases and individual patient medical records. Standardized mortality ratios (with 95% confidence intervals) were calculated by dividing the observed mortality rates by the rates predicted by APACHE III. The area under the receiver operating characteristic curve (AUC) and the Hosmer-Lemeshow C statistic were used to assess, respectively, discrimination and calibration of APACHE III.</p> <p>Results</p> <p>APACHE III data were available for 918 admissions after OLT. Mean (standard deviation [SD]) APACHE III (APIII) and Acute Physiology (APS) scores on the day of transplant were 60.5 (25.8) and 50.8 (23.6), respectively. Mean (SD) predicted ICU and hospital mortality rates were 7.3% (15.4) and 10.6% (18.9), respectively. The observed ICU and hospital mortality rates were 1.1% and 3.4%, respectively. The standardized ICU and hospital mortality ratios with their 95% C.I. were 0.15 (0.07 to 0.27) and 0.32 (0.22 to 0.45), respectively.</p> <p>There were statistically significant differences in APS, APIII, predicted ICU and predicted hospital mortality between survivors and non-survivors. In predicting mortality, the AUC of APACHE III prediction of hospital death was 0.65 (95% CI, 0.62 to 0.68). The Hosmer-Lemeshow C statistic was 5.288 with a p value of 0.871 (10 degrees of freedom).</p> <p>Conclusion</p> <p>APACHE III discriminates poorly between survivors and non-survivors of patients admitted to the ICU after OLT. Though APACHE III has been shown to be valid in heterogenous populations and in certain groups of patients with specific diagnoses, it should be used with caution – if used at all – in recipients of liver transplantation.</p

    Accommodating individual travel history and unsampled diversity in Bayesian phylogeographic inference of SARS-CoV-2

    Get PDF
    Spatiotemporal bias in genome sampling can severely confound discrete trait phylogeographic inference. This has impeded our ability to accurately track the spread of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, despite the availability of unprecedented numbers of SARS-CoV-2 genomes. Here, we present an approach to integrate individual travel history data in Bayesian phylogeographic inference and apply it to the early spread of SARS-CoV-2. We demonstrate that including travel history data yields i) more realistic hypotheses of virus spread and ii) higher posterior predictive accuracy compared to including only sampling location. We further explore methods to ameliorate the impact of sampling bias by augmenting the phylogeographic analysis with lineages from undersampled locations. Our reconstructions reinforce specific transmission hypotheses suggested by the inclusion of travel history data, but also suggest alternative routes of virus migration that are plausible within the epidemiological context but are not apparent with current sampling efforts.status: publishe
    corecore