5,938 research outputs found

    Gluon saturation and the Froissart bound: a simple approach

    Full text link
    At very high energies we expect that the hadronic cross sections satisfy the Froissart bound, which is a well-established property of the strong interactions. In this energy regime we also expect the formation of the Color Glass Condensate, characterized by gluon saturation and a typical momentum scale: the saturation scale QsQ_s. In this paper we show that if a saturation window exists between the nonperturbative and perturbative regimes of Quantum Chromodynamics (QCD), the total cross sections satisfy the Froissart bound. Furthermore, we show that our approach allows us to describe the high energy experimental data on pp/ppˉpp/p\bar{p} total cross sections.Comment: 6 pages, 5 figures. Includes additional figures, discussion and reference

    No-horizon theorem for spacetimes with spacelike G1 isometry groups

    Full text link
    We consider four-dimensional spacetimes (M,g)(M,{\mathbf g}) which obey the Einstein equations G=T{\mathbf G}={\mathbf T}, and admit a global spacelike G1=RG_{1}={\mathbb R} isometry group. By means of dimensional reduction and local analyis on the reduced (2+1) spacetime, we obtain a sufficient condition on T{\mathbf T} which guarantees that (M,g)(M,{\mathbf g}) cannot contain apparent horizons. Given any (3+1) spacetime with spacelike translational isometry, the no-horizon condition can be readily tested without the need for dimensional reduction. This provides thus a useful and encompassing apparent horizon test for G1G_{1}-symmetric spacetimes. We argue that this adds further evidence towards the validity of the hoop conjecture, and signals possible violations of strong cosmic censorship.Comment: 8 pages, LaTeX, uses IOP package; published in Class. Quantum Gra

    Radion production in exclusive processes at CERN LHC

    Full text link
    In the Randall-Sundrum (RS) scenario the compactification radius of the extra dimension is stabilized by the radion, which is a scalar field lighter than the graviton Kaluza-Klein states. It implies that the detection of the radion will be the first signature of the stabilized RS model. In this paper we study the exclusive production of the radion in electromagnetic and diffractive hadron - hadron collisions at the LHC. Our results demonstrate that the diffractive production of radion is dominant and should be feasible of study at CERN LHC.Comment: 6 pages, 3 figures, 1 tabl

    Nuclear shadowing from exclusive quarkonium photoproduction at the BNL RHIC and CERN LHC

    Full text link
    The photonuclear production of vector mesons in ultraperipheral heavy ion collisions is investigated within the collinear approach using different parameterizations for the nuclear gluon distribution. The integrated cross section and the rapidity distribution for the AA→VAAAA \to V AA (V=J/Ψ,ΥV = J/\Psi, \Upsilon) process are computed for energies of RHIC and LHC. A comparison with the recent PHENIX data on coherent production of J/ΨJ/\Psi mesons is also presented. We demonstrate that the study of the exclusive quarkonium photoproduction can be used to constrain the nuclear effects in the gluon distribution.Comment: 8 pages, 4 figures, 2 tables. Version to be published in Physical Review
    • …
    corecore