25,067 research outputs found

    Noncommutative Field Theory: Nonrelativistic Fermionic Field Coupled to the Chern-Simons Field in 2+1 Dimensions

    Full text link
    We study a noncommutative nonrelativistic fermionic field theory in 2+1 dimensions coupled to the Chern-Simons field. We perform a perturbative analysis of model and show that up to one loop the ultraviolet divergences are canceled and the infrared divergences are eliminated by the noncommutative Pauli term.Comment: Some references adde

    Plastic Deformation of 2D Crumpled Wires

    Full text link
    When a single long piece of elastic wire is injected trough channels into a confining two-dimensional cavity, a complex structure of hierarchical loops is formed. In the limit of maximum packing density, these structures are described by several scaling laws. In this paper it is investigated this packing process but using plastic wires which give origin to completely irreversible structures of different morphology. In particular, it is studied experimentally the plastic deformation from circular to oblate configurations of crumpled wires, obtained by the application of an axial strain. Among other things, it is shown that in spite of plasticity, irreversibility, and very large deformations, scaling is still observed.Comment: 5 pages, 6 figure

    Influência do preço externo no preço interno de frango.

    Get PDF
    bitstream/item/58658/1/CUsersPiazzonDocuments188.pd

    Approaching the ground states of the random maximum two-satisfiability problem by a greedy single-spin flipping process

    Full text link
    In this brief report we explore the energy landscapes of two spin glass models using a greedy single-spin flipping process, {\tt Gmax}. The ground-state energy density of the random maximum two-satisfiability problem is efficiently approached by {\tt Gmax}. The achieved energy density e(t)e(t) decreases with the evolution time tt as e(t)e()=h(log10t)ze(t)-e(\infty)=h (\log_{10} t)^{-z} with a small prefactor hh and a scaling coefficient z>1z > 1, indicating an energy landscape with deep and rugged funnel-shape regions. For the ±J\pm J Viana-Bray spin glass model, however, the greedy single-spin dynamics quickly gets trapped to a local minimal region of the energy landscape.Comment: 5 pages with 4 figures included. Accepted for publication in Physical Review E as a brief repor

    Complete Fusion Enhancement and Suppression of Weakly Bound Nuclei at Near Barrier Energies

    Full text link
    We consider the influence of breakup channels on the complete fusion of weakly bound systems in terms of dynamic polarization potentials. It is argued that the enhancement of the cross section at sub-barrier energies may be consistent with recent experimental observations that nucleon transfer, often leading to breakup, is dominant compared to direct breakup. The main trends of the experimental complete fusion cross section for 6,7^{6,7}Li + 209^{209}Bi are analyzed in the framework of the DPP approach.Comment: 12 pages, 2 figure

    Theory of magnetic deflagration

    Full text link
    Theory of magnetic deflagration (avalanches) in crystals of molecular magnets has been developed. The phenomenon resembles the burning of a chemical substance, with the Zeeman energy playing the role of the chemical energy. Non-destructive reversible character of magnetic deflagration, as well as the possibility to continuously tune the flammability of the crystal by changing the magnetic field, makes molecular magnets an attractive toy system for a detailed study of the burning process. Besides simplicity, new features, as compared to the chemical burning, include possibility of quantum decay of metastable spin states and strong temperature dependence of the heat capacity and thermal conductivity. We obtain analytical and numerical solutions for criteria of the ignition of magnetic deflagration, and compute the ignition rate and the speed of the developed deflagration front.Comment: 17 Pages, 17 Figure caption

    Structural properties of crumpled cream layers

    Full text link
    The cream layer is a complex heterogeneous material of biological origin which forms spontaneously at the air-milk interface. Here, it is studied the crumpling of a single cream layer packing under its own weight at room temperature in three-dimensional space. The structure obtained in these circumstances has low volume fraction and anomalous fractal dimensions. Direct means and noninvasive NMR imaging technique are used to investigate the internal and external structure of these systems.Comment: 9 pages, 4 figures, accepted in J. Phys. D: Appl. Phy
    corecore