22,693 research outputs found

    Slavnov-Taylor identities for noncommutative QED4_4

    Full text link
    In this work we present an analysis of the one-loop Slavnov-Taylor identities in noncommutative QED4_4. The vectorial fermion-photon and the triple photon vertex functions were studied, with the conclusion that no anomalies arise.Comment: 24 pages, revtex4, v2: typos correcte

    Gauged Thirring Model in the Heisenberg Picture

    Get PDF
    We consider the (2+1)-dimensional gauged Thirring model in the Heisenberg picture. In this context we evaluate the vacuum polarization tensor as well as the corrected gauge boson propagator and address the issues of generation of mass and dynamics for the gauge boson (in the limits of QED3_3 and Thirring model as a gauge theory, respectively) due to the radiative corrections.Comment: 14 pages, LaTex, no figure

    The complex Sine-Gordon equation as a symmetry flow of the AKNS Hierarchy

    Full text link
    It is shown how the complex sine-Gordon equation arises as a symmetry flow of the AKNS hierarchy. The AKNS hierarchy is extended by the ``negative'' symmetry flows forming the Borel loop algebra. The complex sine-Gordon and the vector Nonlinear Schrodinger equations appear as lowest negative and second positive flows within the extended hierarchy. This is fully analogous to the well-known connection between the sine-Gordon and mKdV equations within the extended mKdV hierarchy. A general formalism for a Toda-like symmetry occupying the ``negative'' sector of sl(N) constrained KP hierarchy and giving rise to the negative Borel sl(N) loop algebra is indicated.Comment: 8 pages, LaTeX, typos corrected, references update

    Astrometry of mutual approximations between natural satellites. Application to the Galilean moons

    Full text link
    Typically we can deliver astrometric positions of natural satellites with errors in the 50-150 mas range. Apparent distances from mutual phenomena, have much smaller errors, less than 10 mas. However, this method can only be applied during the equinox of the planets. We developed a method that can provide accurate astrometric data for natural satellites -- the mutual approximations. The method can be applied when any two satellites pass close by each other in the apparent sky plane. The fundamental parameter is the central instant t0t_0 of the passage when the distances reach a minimum. We applied the method for the Galilean moons. All observations were made with a 0.6 m telescope with a narrow-band filter centred at 889 nm with width of 15 nm which attenuated Jupiter's scattered light. We obtained central instants for 14 mutual approximations observed in 2014-2015. We determined t0t_0 with an average precision of 3.42 mas (10.43 km). For comparison, we also applied the method for 5 occultations in the 2009 mutual phenomena campaign and for 22 occultations in the 2014-2015 campaign. The comparisons of t0t_0 determined by our method with the results from mutual phenomena show an agreement by less than 1-sigma error in t0t_0, typically less than 10 mas. This new method is particularly suitable for observations by small telescopes.Comment: 13 pages, 11 figures and 8 tables. Based on observations made at the Laborat\'orio Nacional de Astrof\'isica (LNA), Itajub\'a-MG, Brazi

    Nontrivial temporal scaling in a Galilean stick-slip dynamics

    Full text link
    We examine the stick-slip fluctuating response of a rough massive non-rotating cylinder moving on a rough inclined groove which is submitted to weak external perturbations and which is maintained well below the angle of repose. The experiments presented here, which are reminiscent of the Galileo's works with rolling objects on inclines, have brought in the last years important new insights into the friction between surfaces in relative motion and are of relevance for earthquakes, differing from classical block-spring models by the mechanism of energy input in the system. Robust nontrivial temporal scaling laws appearing in the dynamics of this system are reported, and it is shown that the time-support where dissipation occurs approaches a statistical fractal set with a fixed value of dimension. The distribution of periods of inactivity in the intermittent motion of the cylinder is also studied and found to be closely related to the lacunarity of a random version of the classic triadic Cantor set on the line.Comment: 7 pages including 6 figure

    Supersymmetry for integrable hierarchies on loop superalgebras

    Full text link
    The algebraic approach is employed to formulate N=2 supersymmetry transformations in the context of integrable systems based on loop superalgebras sl^(p+1,p),p1\hat{\rm sl}(p+1,p), p \ge 1 with homogeneous gradation. We work with extended integrable hierarchies, which contain supersymmetric AKNS and Lund-Regge sectors. We derive the one-soliton solution for p=1p=1 which solves positive and negative evolution equations of the N=2 supersymmetric model.Comment: Latex, 21 page

    Tuning in magnetic modes in Tb(Co_{x}Ni_{1-x})_{2}B_{2}C: from longitudinal spin-density waves to simple ferromagnetism

    Full text link
    Neutron diffraction and thermodynamics techniques were used to probe the evolution of the magnetic properties of Tb(Co_{x}Ni_{1-x})_{2}B_{2}C. A succession of magnetic modes was observed as x is varied: the longitudinal modulated k=(0.55,0,0) state at x=0 is transformed into a collinear k=([nicefrac]\nicefrac{1}{2},0,[nicefrac]\nicefrac{1}{2}) antiferromagnetic state at x= 0.2, 0.4; then into a transverse c-axis modulated k=(0,0,[nicefrac]\nicefrac{1}{3}) mode at x= 0.6, and finally into a simple ferromagnetic structure at x= 0.8 and 1. Concomitantly, the low-temperature orthorhombic distortion of the tetragonal unit cell at x=0 is reduced smoothly such that for x >= 0.4 only a tetragonal unit cell is manifested. Though predicted theoretically earlier, this is the first observation of the k=(0,0,[nicefrac]\nicefrac{1}{3}) mode in borocarbides; our findings of a succession of magnetic modes upon increasing x also find support from a recently proposed theoretical model. The implication of these findings and their interpretation on the magnetic structure of the RM_{2}B_{2}C series are also discussed

    Cooperative localization-delocalization in the high Tc cuprates

    Full text link
    The intrinsic metastable crystal structure of the cuprates results in local dynamical lattice instabilities, strongly coupled to the density fluctuations of the charge carriers. They acquire in this way simultaneously both, delocalized and localized features. It is responsible for a partial fractioning of the Fermi surface, i.e., the Fermi surface gets hidden in a region around the anti-nodal points, because of the opening of a pseudogap in the normal state, arising from a partial charge localization. The high energy localized single-particle features are a result of a segregation of the homogeneous crystal structure into checker-board local nano-size structures, which breaks the local translational and rotational symmetry. The pairing in such a system is dynamical rather than static, whereby charge carriers get momentarily trapped into pairs in a deformable dynamically fluctuating ligand environment. We conclude that the intrinsically heterogeneous structure of the cuprates must play an important role in this type of superconductivity.Comment: 14 pages, 8 figures, Proceedings of the "International Conference on Condensed Matter Theories", Quito, 2009 Int. J. Mod. Phys. B 2010 (Accepted
    corecore