3 research outputs found

    Ignition of a lean PRF/air mixture under RCCI/SCCI conditions: Chemical aspects

    No full text
    Chemical aspects of the ignition of a primary reference fuel (PRF)/air mixture under reactivity controlled compression ignition (RCCI) and stratified charge compression ignition (SCCI) conditions are investigated by analyzing two-dimensional direct numerical simulation (DNS) data with chemical explosive mode (CEM) analysis. CEMA is adopted to provide fundamental insights into the ignition process by identifying controlling species and elementary reactions at different locations and times. It is found that at the first ignition delay, low-temperature chemistry (LTC) represented by the isomerization of alkylperoxy radical, chain branching reactions of keto-hydroperoxide, and H-atom abstraction of n-heptane is predominant for both RCCI and SCCI combustion. In addition, explosion index and participation index analyses together with conditional means on temperature verify that low-temperature heat release (LTHR) from local mixtures with relatively-high n-heptane concentration occurs more intensively in RCCI combustion than in SCCI combustion, which ultimately advances the overall RCCI combustion and distributes its heat release rate over time. It is also found that at the onset of the main combustion, high-temperature heat release (HTHR) occurs primarily in thin deflagrations where temperature, CO, and OH are found to be the most important species for the combustion. The conversion reaction of CO to CO2 and hydrogen chemistry are identified as important reactions for HTHR. The overall RCCI/SCCI combustion can be understood by mapping the variation of 2-D RCCI/SCCI combustion in temperature space onto the temporal evolution of 0-D ignition.clos

    Ignition of a lean PRF/air mixture under RCCI/SCCI conditions: A comparative DNS study

    No full text
    The ignition characteristics of a lean primary reference fuel (PRF)/air mixture under reactivity controlled compression ignition (RCCI) and stratified charge compression ignition (SCCI) conditions are investigated using 2-D direct numerical simulations (DNSs) with a 116-species reduced mechanism of PRF oxidation. For RCCI combustion, n-heptane and iso-octane are used as two different reactivity fuels and the corresponding global PRF number is PRF50 which is also used as a single fuel for SCCI combustion. The 2-D DNSs of RCCI/SCCI combustion are performed by varying degree of fuel stratification, r, and turbulence intensity, u', at different initial mean temperature, T-0, with negatively-correlated T-r fields. It is found that in the low-and intermediate-temperature regimes, the overall combustion of RCCI cases occurs earlier and its mean heat release rate (HRR) is more distributed over time than those of the corresponding SCCI cases. This is because PRF number stratification, PRF', plays a dominant role and T' has a negligible effect on the overall com-bustion within the negative temperature coefficient (NTC) regime. In the high-temperature regime, however, the difference between RCCI and SCCI combustion becomes marginal because the ignition of the PRF/air mixture is highly-sensitive to T' rather than PRF' and phi'. The Damkohler number analysis verifies that the mean HRR is more distributed over time with increasing r because the portion of deflagration mode of com-bustion becomes larger with increasing fuel stratification. Finally, it is found that the overall combustion of both RCCI and SCCI cases becomes more like the 0-D ignition with increasing u' due to the homogenization of initial mixture by turbulent mixing.clos

    Study of isotopic distributions of the fragments from the 25MeV/u Ar-40induced reactions

    No full text
    The forward emitted fragments in 25 MeV / u Ar-40 induced reactions The forward emitted fragments in 25 MeV / u Ar-40 induced reaction
    corecore