5,742 research outputs found
MAP Kinase‐Dependent RUNX2 Phosphorylation Is Necessary for Epigenetic Modification of Chromatin During Osteoblast Differentiation
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137207/1/jcp25517.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137207/2/jcp25517_am.pd
Multimorbidity Content-Based Medical Image Retrieval Using Proxies
Content-based medical image retrieval is an important diagnostic tool that
improves the explainability of computer-aided diagnosis systems and provides
decision making support to healthcare professionals. Medical imaging data, such
as radiology images, are often multimorbidity; a single sample may have more
than one pathology present. As such, image retrieval systems for the medical
domain must be designed for the multi-label scenario. In this paper, we propose
a novel multi-label metric learning method that can be used for both
classification and content-based image retrieval. In this way, our model is
able to support diagnosis by predicting the presence of diseases and provide
evidence for these predictions by returning samples with similar pathological
content to the user. In practice, the retrieved images may also be accompanied
by pathology reports, further assisting in the diagnostic process. Our method
leverages proxy feature vectors, enabling the efficient learning of a robust
feature space in which the distance between feature vectors can be used as a
measure of the similarity of those samples. Unlike existing proxy-based
methods, training samples are able to assign to multiple proxies that span
multiple class labels. This multi-label proxy assignment results in a feature
space that encodes the complex relationships between diseases present in
medical imaging data. Our method outperforms state-of-the-art image retrieval
systems and a set of baseline approaches. We demonstrate the efficacy of our
approach to both classification and content-based image retrieval on two
multimorbidity radiology datasets
The cosmic microwave background radiation temperature at z = 3.025 toward QSO 0347--3819
From the analysis of the CII fine-structure population ratio in the damped
Ly_alpha system at z = 3.025 toward the quasar Q0347--3819 we derive an upper
bound of 14.6 (+/- 0.2) K on the cosmic microwave background temperature
regardless the presence of other different excitation mechanisms. The analysis
of the ground state rotational level populations of H_2 detected in the system
reveals a Galactic-type UV radiation field ruling out UV pumping as an
important excitation mechanism for CII. The low dust content estimated from the
Cr/Zn ratio indicates that the IR dust emission can also be neglected. When the
collisional excitation is considered, we measure a temperature for the cosmic
background radiation of T = 12.1 (+1.7, -3.2) K. The results are in agreement
with the T = 10.968 (+/-) 0.004 K predicted by the hot Big Bang cosmology at z
= 3.025.Comment: Accepte
Properties of the Broad-Range Nematic Phase of a Laterally Linked H-Shaped Liquid Crystal Dimer
In search for novel nematic materials, a laterally linked H-shaped liquid
crystal dimer have been synthesized and characterized. The distinct feature of
the material is a very broad temperature range (about 50 oC) of the nematic
phase, which is in contrast with other reported H-dimers that show
predominantly smectic phases. The material exhibits interesting textural
features at the scale of nanometers (presence of smectic clusters) and at the
macroscopic scales. Namely, at a certain temperature, the flat samples of the
material show occurrence of domain walls. These domain walls are caused by the
surface anchoring transition and separate regions with differently tilted
director. Both above and below this transition temperature the material
represents a uniaxial nematic, as confirmed by the studies of defects in flat
samples and samples with colloidal inclusions, freely suspended drops, X-ray
diffraction and transmission electron microscopy.Comment: 30 pages (including Supplementary Information), 7 Figure
Neutral and Cationic Rare Earth Metal Alkyl and Benzyl Compounds with the 1,4,6-Trimethyl-6-pyrrolidin-1-yl-1,4-diazepane Ligand and Their Performance in the Catalytic Hydroamination/Cyclization of Aminoalkenes
A new neutral tridentate 1,4,6-trimethyl-6-pyrrolidin-1-yl-1,4-diazepane (L) was prepared. Reacting L with trialkyls M(CH2SiMe3)3(THF)2 (M = Sc, Y) and tribenzyls M(CH2Ph)3(THF)3 (M = Sc, La) yielded trialkyl complexes (L)M(CH2SiMe3)3 (M = Sc, 1; M = Y, 2) and tribenzyl complexes (L)M(CH2Ph)3 (M = Sc, 3; M = La, 4). Complexes 1 and 2 can be converted to their corresponding ionic compounds [(L)M(CH2SiMe3)2(THF)][B(C6H5)4] (M = Sc, Y) by reaction with [PhNMe2H][B(C6H5)4] in THF. Complexes 3 and 4 can be converted to cationic species [(L)M(CH2Ph)2]+ by reaction with [PhNMe2H][B(C6F5)4] in C6D5Br in the absence of THF. The neutral complexes 1-4 and their cationic derivatives were studied as catalysts for the hydroamination/cyclization of 2,2-diphenylpent-4-en-1-amine and N-methylpent-4-en-1-amine reference substrates and compared with ligand-free Sc, Y, and La neutral and cationic catalysts. The most effective catalysts in the series were the cationic L-yttrium catalyst (for 2,2-diphenylpent-4-en-1-amine) and the cationic lanthanum systems (for N-methylpent-4-en-1-amine). For the La catalysts, evidence was obtained for release of L from the metal during catalysis.
Antibacterial, Anti-HIV-1 Protease and Cytotoxic Activities of Aqueous Ethanolic Extracts from Combretum Adenogonium Steud. Ex A. Rich (Combretaceae).
\ud
\ud
Records have shown that Combretum adenogonium Steud. Ex A. Rich (Combretaceae) is used in traditional medicine systems of several tribes in Tanzania. This study focused on the investigation of antibacterial activity, anti-HIV-1 protease activity, toxicity properties and classes of phytochemicals in extracts from C. adenogonium Steud. Ex A. Rich (Combretaceae) to evaluate potential of these extracts for development as herbal remedies. Dried plant material were ground to fine powder and extracted using 80% aqueous ethanol to afford root, leaf and stem bark extracts. The extracts were assayed for anti-HIV-1 protease activities, antibacterial activities using microdilution methods and cytotoxicity using brine shrimps lethality assay. Screening for major phytochemical classes was carried out using standard chemical tests. All extracts exhibited antibacterial activity to at least one of the test bacteria with MIC-values ranging from 0.31-5.0 mg/ml. Two extracts, namely, root and stem bark exhibited anti-HIV-1 PR activity with IC50 values of 24.7 and 26.5 μg/ml, respectively. Stem bark and leaf extracts showed mild toxicity with LC50 values of 65.768 μg/ml and 76.965 μg/ml, respectively, whereas roots were relatively non-toxic (LC50 = 110.042 μg/ml). Phytochemical screening of the extracts indicated presence of flavonoids, terpenoids, alkaloids, tannins, glycosides and saponins. These results provide promising baseline information for the potential development of C. adenogonium extracts in treatment of bacterial and HIV/AIDS-related opportunistic infections
Dipole source analysis of auditory P300 response in depressive and anxiety disorders
This paper is to study auditory event-related potential P300 in patients with anxiety and depressive disorders using dipole source analysis. Auditory P300 using 2-stimulus oddball paradigm was collected from 35 patients with anxiety disorder, 32 patients with depressive disorder, and 30 healthy controls. P300 dipole sources and peak amplitude of dipole activities were analyzed. The source analysis resulted in a 4-dipole configuration, where temporal dipoles displayed greater P300 amplitude than that of frontal dipoles. In addition, a right-greater-than-left hemispheric asymmetry of dipole magnitude was found in patients with anxiety disorder, whereas a left-greater-than-right hemispheric asymmetry of dipole magnitude was observed in depressed patients. Results indicated that the asymmetry was more prominent over the temporal dipole than that of frontal dipoles in patients. Patients with anxiety disorder may increase their efforts to enhance temporal dipole activity to compensate for a deficit in frontal cortex processing, while depressed patients show dominating reduction of right temporal activity. The opposite nature of results observed with hemispheric asymmetry in depressive and anxiety disorders could serve to be valuable information for psychiatric studies
Structural Amyloid Plaque Polymorphism is Associated with Distinct Lipid Accumulations Revealed by Trapped Ion Mobility Mass Spectrometry Imaging (TIMS MSI)
Understanding of Alzheimer’s disease (AD) pathophysiology, requires molecular assessment of how key pathological factors, specifically amyloid β (Aβ) plaques, influence the surrounding microenvironment. Here, neuronal lipids have been implicated in Aβ) plaque pathology, though the lipid microenvironment in direct proximity to Aβ plaques are still not fully resolved. A further challenge is the microenvironmental molecular heterogeneity, across structurally polymorphic Aβ features - such as diffuse, immature and mature, fibrillary aggregates, whose resolution requires the integration of advanced, multimodal chemical imaging tools. Herein, we used matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) trapped ion mobility spectrometry Time-of-Flight (TIMS TOF) in combination with hyperspectral confocal microscopy to probe the lipidomic microenvironment associated with structural polymorphism of Aβ plaques in transgenic Alzheimer’s disease mice (tgAPPSWE). Using on tissue and ex situ validation, TIMS MS/MS facilitated unambiguous identification of isobaric lipid species that showed plaque pathology associated localizations. Integrated multivariate imaging data analysis revealed multiple, Aβ plaque enriched lipid patterns for gangliosides (GM), phosphoinositols (PI), phosphoethanolamines (PE) and phosphatidic acids (PA). Conversely, sulfatides (ST), cardiolipins (CL) and polyunsaturated fatty acid conjugated -phosphoserines (PS) and - PE were depleted at plaques. Hyperspectral amyloid imaging further delineated unique distribution of PA, PE to mature plaque core regions, while PI, LPI, GM2 and GM3 localized to immature Aβ aggregates present within the periphery of individual Aβ plaques. Finally, we followed AD pathology associated lipid changes over time, identifying plaque growth and maturation to be characterized by peripheral accumulation of PI (18:0/22:6). Together, these data demonstrate the potential of multimodal imaging approaches to overcome limitations associated with conventional advanced MS imaging applications. This allowed for differentiation of both distinct lipid components in a complex micro environment, as well as their correlation to disease relevant amyloid plaque polymorphs
Molecular Hydrogen in the Damped Ly alpha Absorber of Q1331+170
We used HST/STIS to obtain the spectrum of molecular hydrogen associated with
the damped Ly system at toward the quasar
Q1331+170 at . Strong absorption was detected,
with a total column density of .The molecular hydrogen fraction is , which is the
greatest value reported so far in any redshifted damped Ly system. This
results from the combined effect of a relatively high dust-to-gas ratio, a low
gas temperature, and an extremely low ambient UV radiation field. Based on the
observed population of states, we estimate the photo-absorption rate to be
, corresponding to a
local UV radiation field of , where is the UV intensity
at in the solar neighborhood. This is comparable with the
metagalactic UV background intensity at this redshift, and implies an extremely
low star formation rate in the absorber's environment. The observed CO-to-H
column density ratio is ,
which is similar to the value measured for diffuse molecular clouds in the
Galactic ISM. Finally, applying the inferred physical conditions to the
observed C I fine structure excitation (Songaila {\it et al.} 1994), we
estimate the cosmic microwave background temperature to be at , consistent with the predicted value of from the standard cosmology.Comment: Accepted for publication, Astrophysical Journal. Abstract abbreviate
Seagrass can mitigate negative ocean acidification effects on calcifying algae
The ultimate effect that ocean acidification (OA) and warming will have on the physiology of calcifying algae is still largely uncertain. Responses depend on the complex interactions between seawater chemistry, global/local stressors and species-specific physiologies. There is a significant gap regarding the effect that metabolic interactions between coexisting species may have on local seawater chemistry and the concurrent effect of OA. Here, we manipulated CO2 and temperature to evaluate the physiological responses of two common photoautotrophs from shallow tropical marine coastal ecosystems in Brazil: the calcifying alga Halimeda cuneata, and the seagrass Halodule wrightii. We tested whether or not seagrass presence can influence the calcification rate of a widespread and abundant species of Halimeda under OA and warming. Our results demonstrate that under elevated CO2, the high photosynthetic rates of H. wrightii contribute to raise H. cuneata calcification more than two-fold and thus we suggest that H. cuneata populations coexisting with H. wrightii may have a higher resilience to OA conditions. This conclusion supports the more general hypothesis that, in coastal and shallow reef environments, the metabolic interactions between calcifying and non-calcifying organisms are instrumental in providing refuge against OA effects and increasing the resilience of the more OA-susceptible species.E.B. would like to thank the Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (CAPES) for Masters
funding. Funding for this project came from the Synergism grant (CNPq 407365/2013-3). We extend our thanks
to the Brazil-based Projeto Coral Vivo and its sponsor PetroBras Ambiental for providing the Marine Mesocosm
structure and experimental assistance.info:eu-repo/semantics/publishedVersio
- …