1,354 research outputs found

    A valley-spin qubit in a carbon nanotube

    Full text link
    Although electron spins in III-V semiconductor quantum dots have shown great promise as qubits, a major challenge is the unavoidable hyperfine decoherence in these materials. In group IV semiconductors, the dominant nuclear species are spinless, allowing for qubit coherence times that have been extended up to seconds in diamond and silicon. Carbon nanotubes are a particularly attractive host material, because the spin-orbit interaction with the valley degree of freedom allows for electrical manipulation of the qubit. In this work, we realise such a qubit in a nanotube double quantum dot. The qubit is encoded in two valley-spin states, with coherent manipulation via electrically driven spin resonance (EDSR) mediated by a bend in the nanotube. Readout is performed by measuring the current in Pauli blockade. Arbitrary qubit rotations are demonstrated, and the coherence time is measured via Hahn echo. Although the measured decoherence time is only 65 ns in our current device, this work offers the possibility of creating a qubit for which hyperfine interaction can be virtually eliminated

    Valley-spin blockade and spin resonance in carbon nanotubes

    Full text link
    Manipulation and readout of spin qubits in quantum dots made in III-V materials successfully rely on Pauli blockade that forbids transitions between spin-triplet and spin-singlet states. Quantum dots in group IV materials have the advantage of avoiding decoherence from the hyperfine interaction by purifying them with only zero-spin nuclei. Complications of group IV materials arise from the valley degeneracies in the electronic bandstructure. These lead to complicated multiplet states even for two-electron quantum dots thereby significantly weakening the selection rules for Pauli blockade. Only recently have spin qubits been realized in silicon devices where the valley degeneracy is lifted by strain and spatial confinement. In carbon nanotubes Pauli blockade can be observed by lifting valley degeneracy through disorder. In clean nanotubes, quantum dots have to be made ultra-small to obtain a large energy difference between the relevant multiplet states. Here we report on low-disorder nanotubes and demonstrate Pauli blockade based on both valley and spin selection rules. We exploit the bandgap of the nanotube to obtain a large level spacing and thereby a robust blockade. Single-electron spin resonance is detected using the blockade.Comment: 31 pages including supplementary informatio

    Structural biology and phylogenetic estimation

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62633/1/388527a0.pd

    Altered growth characteristics of skin fibroblasts from wild-derived mice, and genetic loci regulating fibroblast clone size

    Full text link
    Mouse fibroblast senescence in vitro is an important model for the study of aging at cellular level. However, common laboratory mouse strains may have lost some important allele variations related to aging processes. In this study, growth in vitro of tail skin fibroblasts (TSFs) derived from a wild-derived stock, Pohnpei (Pohn) mice, differed from growth of control C57BL/6 J (B6) TSFs. Pohn TSFs exhibited higher proliferative ability, fewer apoptotic cells, decreased expression of Cip1 , smaller surface areas, fewer cells positive for senescence associated-β-galactosidase (SA-β-gal) and greater resistance to H 2 O 2 -induced SA-β-gal staining and Cip1 expression. These data suggest that TSFs from Pohn mice resist cellular senescence-like changes. Using large clone ratio (LCR) as the phenotype, a quantitative trait locus (QTL) analysis in a Pohn/B6 backcross population found four QTLs for LCR: Fcs1 on Chr 3 at 55 cm; Fcs2 on Chr X at 50 cm; Fcs3 on Chr 4 at 51 cm and Fcs4 on Chr 10 at 25 cm. Together, these four QTLs explain 26.1% of the variations in LCRs in the N2 population. These are the first QTLs reported that regulate fibroblast growth. Glutathione S transferase mu ( GST-mu ) genes are overrepresented in the 95% confidence interval of Fcs1 , and Pohn TSFs have higher H 2 O 2 -induced GST-mu 4 , 5 and 7 mRNA levels than B6 TSFs. These enzymes may protect Pohn TSFs from oxidation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71416/1/j.1474-9726.2006.00208.x.pd

    Electrical control over single hole spins in nanowire quantum dots

    Get PDF
    Single electron spins in semiconductor quantum dots (QDs) are a versatile platform for quantum information processing, however controlling decoherence remains a considerable challenge. Recently, hole spins have emerged as a promising alternative. Holes in III-V semiconductors have unique properties, such as strong spin-orbit interaction and weak coupling to nuclear spins, and therefore have potential for enhanced spin control and longer coherence times. Weaker hyperfine interaction has already been reported in self-assembled quantum dots using quantum optics techniques. However, challenging fabrication has so far kept the promise of hole-spin-based electronic devices out of reach in conventional III-V heterostructures. Here, we report gate-tuneable hole quantum dots formed in InSb nanowires. Using these devices we demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tuneable between hole and electron QDs, enabling direct comparison between the hyperfine interaction strengths, g-factors and spin blockade anisotropies in the two regimes

    Consequences of epistasis on growth in an erhualian × white duroc pig cross

    Get PDF
    Epistasis describes an interaction between the effects of loci. We included epistasis in quantitative trait locus (QTL) mapping of growth at a series of ages in a cross of a Chinese pig breed, Erhualian, with a commercial line, White Duroc. Erhualian pigs have much lower growth rates than White Duroc. We improved a method for genomewide testing of epistasis and present a clear analysis workflow. We also suggest a new approach for interpreting epistasis results where significant additive and dominance effects of a locus in specific backgrounds are determined. In total, seventeen QTL were found and eleven showed epistasis. Loci on chromosomes 2, 3, 4 and 7 were highlighted as affecting growth at more than one age or forming an interaction network. Epistasis resulted in both the QTL on chromosomes 3 and 7 having effects in opposite directions. We believe it is the first time for the chromosome 7 locus that an allele from a Chinese breed has been found to decrease growth. The consequences of epistasis were diverse. Results were impacted by using growth rather than body weight as the phenotype and by correcting for an effect of mother. Epistasis made a considerable contribution to growth in this population and modelling epistasis was important for accurately determining QTL effects

    Tools for efficient epistasis detection in genome-wide association study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide association study (GWAS) aims to find genetic factors underlying complex phenotypic traits, for which epistasis or gene-gene interaction detection is often preferred over single-locus approach. However, the computational burden has been a major hurdle to apply epistasis test in the genome-wide scale due to a large number of single nucleotide polymorphism (SNP) pairs to be tested.</p> <p>Results</p> <p>We have developed a set of three efficient programs, FastANOVA, COE and TEAM, that support epistasis test in a variety of problem settings in GWAS. These programs utilize permutation test to properly control error rate such as family-wise error rate (FWER) and false discovery rate (FDR). They guarantee to find the optimal solutions, and significantly speed up the process of epistasis detection in GWAS.</p> <p>Conclusions</p> <p>A web server with user interface and source codes are available at the website <url>http://www.csbio.unc.edu/epistasis/</url>. The source codes are also available at SourceForge <url>http://sourceforge.net/projects/epistasis/</url>.</p

    In silico genotyping of the maize nested association mapping population

    Get PDF
    Nested Association Mapping (NAM) has been proposed as a means to combine the power of linkage mapping with the resolution of association mapping. It is enabled through sequencing or array genotyping of parental inbred lines while using low-cost, low-density genotyping technologies for their segregating progenies. For purposes of data analyses of NAM populations, parental genotypes at a large number of Single Nucleotide Polymorphic (SNP) loci need to be projected to their segregating progeny. Herein we demonstrate how approximately 0.5 million SNPs that have been genotyped in 26 parental lines of the publicly available maize NAM population can be projected onto their segregating progeny using only 1,106 SNP loci that have been genotyped in both the parents and their 5,000 progeny. The challenge is to estimate both the genotype and genetic location of the parental SNP genotypes in segregating progeny. Both challenges were met by estimating their expected genotypic values conditional on observed flanking markers through the use of both physical and linkage maps. About 90%, of 500,000 genotyped SNPs from the maize HapMap project, were assigned linkage map positions using linear interpolation between the maize Accessioned Gold Path (AGP) and NAM linkage maps. Of these, almost 70% provided high probability estimates of genotypes in almost 5,000 recombinant inbred lines
    corecore