77 research outputs found
Diagnostische Bedeutung der Proteinbindung von Plasmacortisol, bestimmt durch Dextrangelfiltration
1. Mittels Dextrangelfiltration wurde nach Inkubation von markiertem Cortisol und Plasma der proteingebundene und der sog. freie Anteil (%) des endogenen Plasmacortisols ermittelt und bei gleichzeitiger fluorimetrischer Bestimmung der 11-OHCS auch die Menge proteingebundenen, bzw. sog. freien Cortisols (”g-%) berechnet.
2. Die diagnostische Brauchbarkeit der Methode wurde bei Patienten mit Nebennierenrindeninsuffizienz, mit Hypophysentumoren, nach Hypophysektomie, mit Cushing-Syndrom mit der fluorimetrischen Bestimmung der 11-OHCS verglichen. Die einfache Bestimmung der Cortisolbindung war bei hypophysektomierten Patienten der Bestimmung der 11-OHCS ĂŒberlegen und entsprach der aufwendigeren ACTH-Belastung.
3. Falsch hohe fluorimetrische 11-OHCS-Spiegel im Plasma unter Spirolacton- oder Oestrogenbehandlung und in der GraviditĂ€t lassen sich durch Bestimmung der Cortisolbindung klĂ€ren. Bei SchilddrĂŒsenĂŒberfunktion war das sog. freie Cortisol im Plasma relativ und absolut vermehrt, bei SchilddrĂŒsenunterfunktion fand sich eine Zunahme des plasmaproteingebundenen Cortisols.1. Following incubation of labeled cortisol and plasma the percentages of protein bound and socalled free endogenous cortisol were determined by means of dextran gel filtration.
2. The diagnostic value of this method was compared with fluorimetric determinations of 11-OHCS for patients with adrenal insufficiency, Cushing-Syndrome, pituitary tumors and after hypophysectomy. In hypophysectomized patients the simple determination of protein bound cortisol was found to correlate well with diagnostic ACTH-infusion tests and to be more sensitive than fluorimetric determinations of 11-OHCS in 9 a.m. plasma.
3. Falsely elevated fluorimetric values of plasma 11-OHCS in patients treated with spirolactone or estrogens, resp. during pregnancy may be recognized through determination of cortisol binding. â In thyrotoxicosis socalled free cortisol was elevated, both relatively and absolutely; in hypothyroidism an increase of protein bound cortisol was found
Modeling of dielectrophoretic transport of myoglobin molecules in microchannels
Myoglobin is one of the premature identifying cardiac markers, whose concentration increases from 90 pgâml or less to over 250 ngâml in the blood serum of human beings after minor heart attack. Separation, detection, and quantification of myoglobin play a vital role in revealing the cardiac arrest in advance, which is the challenging part of ongoing research. In the present work, one of the electrokinetic approaches, i.e., dielectrophoresis (DEP), is chosen to separate the myoglobin. A mathematical model is developed for simulating dielectrophoretic behavior of a myoglobin molecule in a microchannel to provide a theoretical basis for the above application. This model is based on the introduction of a dielectrophoretic force and a dielectric myoglobin model. A dielectric myoglobin model is developed by approximating the shape of the myoglobin molecule as sphere, oblate, and prolate spheroids. A generalized theoretical expression for the dielectrophoretic force acting on respective shapes of the molecule is derived. The microchannel considered for analysis has an array of parallel rectangular electrodes at the bottom surface. The potential and electric field distributions are calculated using Greenâs theorem method and finite element method. These results also compared to the Fourier series method, closed form solutions by Morgan et al. [J. Phys. D: Appl. Phys. 34, 1553 (2001)] and Chang et al. [J. Phys. D: Appl. Phys. 36, 3073 (2003)]. It is observed that both Greenâs theorem based analytical solution and finite element based numerical solution for proposed model are closely matched for electric field and square electric field gradients. The crossover frequency is obtained as 40 MHz for given properties of myoglobin and for all approximated shapes of myoglobin molecule. The effect of conductivity of medium and myoglobin on the crossover frequency is also demonstrated. Further, the effect of hydration layer on the crossover frequency of myoglobin molecules is also presented. Both positive and negative DEP effects on myoglobin molecules are obtained by switching the frequency of applied electric field. The effect of different shapes of myoglobin on DEP force is studied and no significant effect on DEP force is observed. Finally, repulsion of myoglobin molecules from the electrode plane at 1 KHz frequency and 10 V applied voltage is observed. These results provide the ability of applying DEP force for manipulating nanosized biomolecules such as myoglobin
- âŠ