2,910 research outputs found

    The Josephson critical current in a long mesoscopic S-N-S junction

    Full text link
    We carry out an extensive experimental and theoretical study of the Josephson effect in S-N-S junctions made of a diffusive normal metal (N) embedded between two superconducting electrodes (S). Our experiments are performed on Nb-Cu-Nb junctions with highly-transparent interfaces. We give the predictions of the quasiclassical theory in various regimes on a precise and quantitative level. We describe the crossover between the short and the long junction regimes and provide the temperature dependence of the critical current using dimensionless units eRNIc/ϵceR_{N}I_{c}/\epsilon_{c} and kBT/ϵck_{B}T/\epsilon_{c} where ϵc\epsilon_{c} is the Thouless energy. Experimental and theoretical results are in excellent quantitative agreement.Comment: 5 pages, 4 figures, slighly modified version, publishe

    Stabilizing Superconductivity in Nanowires by Coupling to Dissipative Environments

    Full text link
    We present a theory for a finite-length superconducting nanowire coupled to an environment. We show that in the absence of dissipation quantum phase slips always destroy superconductivity, even at zero temperature. Dissipation stabilizes the superconducting phase. We apply this theory to explain the "anti-proximity effect" recently seen by Tian et. al. in Zinc nanowires.Comment: 4 pages, 3 figure

    Strong Electron Tunneling through a Small Metallic Grain

    Full text link
    Electron tunneling through mesoscopic metallic grains can be treated perturbatively only provided the tunnel junction conductances are sufficiently small. If it is not the case, fluctuations of the grain charge become strong. As a result (i) contributions of all -- including high energy -- charge states become important and (ii) excited charge states become broadened and essentially overlap. At the same time the grain charge remains discrete and the system conductance ee-periodically depends on the gate charge. We develop a nonperturbative approach which accounts for all these features and calculate the temperature dependent conductance of the system in the strong tunneling regime at different values of the gate charge.Comment: revtex, 8 pages, 2 .ps figure

    Fluxes, Gaugings and Gaugino Condensates

    Full text link
    Based on the correspondence between the N = 1 superstring compactifications with fluxes and the N = 4 gauged supergravities, we study effective N = 1 four-dimensional supergravity potentials arising from fluxes and gaugino condensates in the framework of orbifold limits of (generalized) Calabi-Yau compactifications. We give examples in heterotic and type II orientifolds in which combined fluxes and condensates lead to vacua with small supersymmetry breaking scale. We clarify the respective roles of fluxes and condensates in supersymmetry breaking, and analyze the scaling properties of the gravitino mass.Comment: 17 pages, C

    Enriching the values of micro and small business research projects: co-creation service provision as perceived by academic, business and student

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Studies in Higher Education, first published online 3 September 2014, available online: http://www.tandfonline.com/doi/full/10.1080/03075079.2014.942273.The National Committee of Inquiry into Higher Education (1996) chaired by Lord Dearing envisioned a university sector central to the UK’s knowledge-based economy. With successive government support the university-business partnership ideology has been put into practice. Widening participation has increased in emphasis over recent years, providing key innovations and skills to support business growth. Yet business schools activities in business growth is marginal against other university schools. The paper reports on an empirical study analyzing the university/business values derived from one small business engagement project. Data collected through semi-structured interviews, observations, memos, and discussions were coupled with critical evaluation of work and action-based learning (ABL) literature. Analysis reveals evidence of multiple value adding factors; it emerged that the existence of knowledge, present or generated through blended learning techniques, was a key value adding element. The findings enabled the construction of a universal process model providing a project framework, detailing areas of collaborative efforts and associated recompenses; this included ease in project advancements and a noticeably advanced project outcome. The study highlights these values in terms of individual and organizational learning, originality and quality of outputs. Given the growing importance of Small to Medium-sized Enterprises (SMEs) to the UK economy, understanding the value co-created by collaborative projects in delivering both work-based and ABL for graduates/students, academics and enterprise management is important.Peer reviewedFinal Accepted Versio

    Fracton pairing mechanism for "strange" superconductors: Self-assembling organic polymers and copper-oxide compounds

    Full text link
    Self-assembling organic polymers and copper-oxide compounds are two classes of "strange" superconductors, whose challenging behavior does not comply with the traditional picture of Bardeen, Cooper, and Schrieffer (BCS) superconductivity in regular crystals. In this paper, we propose a theoretical model that accounts for the strange superconducting properties of either class of the materials. These properties are considered as interconnected manifestations of the same phenomenon: We argue that superconductivity occurs in the both cases because the charge carriers (i.e., electrons or holes) exchange {\it fracton excitations}, quantum oscillations of fractal lattices that mimic the complex microscopic organization of the strange superconductors. For the copper oxides, the superconducting transition temperature TcT_c as predicted by the fracton mechanism is of the order of 150\sim 150 K. We suggest that the marginal ingredient of the high-temperature superconducting phase is provided by fracton coupled holes that condensate in the conducting copper-oxygen planes owing to the intrinsic field-effect-transistor configuration of the cuprate compounds. For the gate-induced superconducting phase in the electron-doped polymers, we simultaneously find a rather modest transition temperature of (23)\sim (2-3) K owing to the limitations imposed by the electron tunneling processes on a fractal geometry. We speculate that hole-type superconductivity observes larger onset temperatures when compared to its electron-type counterpart. This promises an intriguing possibility of the high-temperature superconducting states in hole-doped complex materials. A specific prediction of the present study is universality of ac conduction for TTcT\gtrsim T_c.Comment: 12 pages (including separate abstract page), no figure

    Cooper pairing and finite-size effects in a NJL-type four-fermion model

    Full text link
    Starting from a NJL-type model with N fermion species fermion and difermion condensates and their associated phase structures are considered at nonzero chemical potential μ\mu and zero temperature in spaces with nontrivial topology of the form S1S1S1S^1\otimes S^1\otimes S^1 and R2S1R^2\otimes S^1. Special attention is devoted to the generation of the superconducting phase. In particular, for the cases of antiperiodic and periodic boundary conditions we have found that the critical curve of the phase transitions between the chiral symmetry breaking and superconducting phases as well as the corresponding condensates and particle densities strongly oscillate vs λ1/L\lambda\sim 1/L, where LL is the length of the circumference S1S^1. Moreover, it is shown that at some finite values of LL the superconducting phase transition is shifted to smaller values both of μ\mu and particle density in comparison with the case of L=L=\infty.Comment: 13 pages, 13 figures; minor changes; new references added; version accepted to PR

    Optical absorption and photoluminescence spectroscopy of the growth of silver nanoparticles

    Full text link
    Results obtained from the optical absorption and photoluminescence (PL) spectroscopy experiments have shown the formation of excitons in the silver-exchanged glass samples. These findings are reported here for the first time. Further, we investigate the dramatic changes in the photoemission properties of the silver-exchanged glass samples as a function of postannealing temperature. Observed changes are thought to be due to the structural rearrangements of silver and oxygen bonding during the heat treatments of the glass matrix. In fact, photoelectron spectroscopy does reveal these chemical transformations of silver-exchanged soda glass samples caused by the thermal effects of annealing in a high vacuum atmosphere. An important correlation between temperature-induced changes of the PL intensity and thermal growth of the silver nanoparticles has been established in this Letter through precise spectroscopic studies.Comment: 15 pages,4 figures,PDF fil

    Disordered systems on various time scales: a-Si3B3N7 and homogeneous sintering

    Full text link
    Modeling of materials systems for long times commonly requires the use of separation of time scale methods. We discuss this general approach and present two example systems, a-Si3B3N7 and the generation of homogeneous sinters.Comment: 22 pages, 7 figure

    Large-N spacetime reduction and the sign and silver-blaze problems of dense QCD

    Full text link
    We study the spacetime-reduced (Eguchi-Kawai) version of large-N QCD with nonzero chemical potential. We explore a method to suppress the sign fluctuations of the Dirac determinant in the hadronic phase; the method employs a re-summation of gauge configurations that are related to each other by center transformations. We numerically test this method in two dimensions, and find that it successfully solves the silver-blaze problem. We analyze the system further, and measure its free energy F, the average phase theta of its Dirac determinant, and its chiral condensate . We show that F and are independent of mu in the hadronic phase but that, as chiral perturbation theory predicts, the quenched chiral condensate drops from its mu=0 value when mu~(pion mass)/2. Finally, we find that the distribution of theta qualitatively agrees with further, more recent, predictions from chiral perturbation theory.Comment: 43 pages, 17 figure
    corecore