373 research outputs found

    L’importanza del “parametro energetico” temperatura per la caratterizzazione dinamica dei materiali

    Get PDF
    Le esperienze maturate nel campo dell’analisi termica di materiali utilizzati nelle costruzioni meccaniche [1,2,3] hanno permesso di evidenziare come il rilievo della temperatura (terzo parametro) in prove statiche e dinamiche costituisca un indicatore molto importante ai fini della caratterizzazione dinamica del materiale. Essendo il rilascio termico funzione dell’energia applicata per portare a rottura il materiale, il rilievo di parametri ad esso legati, induce a nuovi ipotesi e definizioni di limiti di fatica e resistenza a tempo. Mediante l’analisi termica è possibile valutare anche parametri correlabili con il valore limite di energia a rottura El del materiale. In [4] era stato già messo in evidenza da A. Risitano e Altri che, in prove statiche di trazione, l’inizio della zona di prima plasticizzazione del materiale, in termine di tensione, era osservabile dalla curva di variazione di temperatura deltaT con il procedere della prova. Nello stesso lavoro si evidenziava come la velocità di prova avesse poca influenza sui valori della variazione di temperatura specialmente durante la fase elastica. Operando con sensori sempre più precisi e per obbiettivi rivolti alla ricerca dell’energia limite a rottura è stato osservato dagli autori che il seguire la variazione della temperatura sulla superficie del provino, in prove statiche di trazione, permette di legare i classici valori di resistenza all’oscillazione ?0 con una “temperatura limite” T0 corrispondente all’inizio di andamenti non lineari della stessa. In questa sede si evidenzia un modello di comportamento fisico del materiale durante le prova di trazione che giustifica, in modo semplice, la capacità di risalire, attraverso la conoscenza sperimentale del limite di comportamento termo-elastico, ai classici parametri di resistenza a fatica. Viene riportato, a titolo di esempio, il risultato relativo a provini piatti forati in acciaio facenti parte di una serie utilizzati per altri scopi (formeranno oggetto di altra pubblicazione) con i quali anche mediante prova statica si è determinata la loro resistenza all’oscillazione

    L’importanza del “parametro energetico” temperatura per la caratterizzazione dinamica dei materiali

    Get PDF
    Le esperienze maturate nel campo dell’analisi termica di materiali utilizzati nelle costruzioni meccaniche [1,2,3] hanno permesso di evidenziare come il rilievo della temperatura (terzo parametro) in prove statiche e dinamiche costituisca un indicatore molto importante ai fini della caratterizzazione dinamica del materiale. Essendo il rilascio termico funzione dell’energia applicata per portare a rottura il materiale, il rilievo di parametri ad esso legati, induce a nuovi ipotesi e definizioni di limiti di fatica e resistenza a tempo. Mediante l’analisi termica è possibile valutare anche parametri correlabili con il valore limite di energia a rottura El del materiale. In [4] era stato già messo in evidenza da A. Risitano e Altri che, in prove statiche di trazione, l’inizio della zona di prima plasticizzazione del materiale, in termine di tensione, era osservabile dalla curva di variazione di temperatura deltaT con il procedere della prova. Nello stesso lavoro si evidenziava come la velocità di prova avesse poca influenza sui valori della variazione di temperatura specialmente durante la fase elastica. Operando con sensori sempre più precisi e per obbiettivi rivolti alla ricerca dell’energia limite a rottura è stato osservato dagli autori che il seguire la variazione della temperatura sulla superficie del provino, in prove statiche di trazione, permette di legare i classici valori di resistenza all’oscillazione ?0 con una “temperatura limite” T0 corrispondente all’inizio di andamenti non lineari della stessa. In questa sede si evidenzia un modello di comportamento fisico del materiale durante le prova di trazione che giustifica, in modo semplice, la capacità di risalire, attraverso la conoscenza sperimentale del limite di comportamento termo-elastico, ai classici parametri di resistenza a fatica. Viene riportato, a titolo di esempio, il risultato relativo a provini piatti forati in acciaio facenti parte di una serie utilizzati per altri scopi (formeranno oggetto di altra pubblicazione) con i quali anche mediante prova statica si è determinata la loro resistenza all’oscillazione

    Definition of the linearity loss of the surface temperature in static tensile tests

    Get PDF
    Static traction tests on material samples for mechanical constructions have pointed out the loss of linearity of the specimen surface temperature with the applied load. This phenomenon is due to the heat generation caused by the local microplasticizations which carry the material to deviate from its behavior, perfectly thermoelastic. The identification of the static load which determines the loss of linearity under the temperature stress becomes extremely important to define an initial dynamic characterization of the material. The temperature variations that can be read during the static loads applications are often very limited (a few tenths of degree for every 100 MPa in steels) and they require the use of special temperature sensors able to measure the temperature variations. The experience acquired in such analysis highlighted that, dealing with highly accurate sensors or with particular materials, the identification of the first loss of linearity can be influenced by the investigator himself mainly for the above mentioned limited temperature variations which can lead to incorrect estimations, sometimes really significant. Checking the validity and the above mentioned observations on the different steels, this work proposes the application of the autocorrelation function to the data collected during the application of a static load in order to make the results of the thermal analysis free from the sensitivity of the operator and also to make the result as objective as possible in order to detect the time of the loss of linearity of the temperature-time function

    Energy release as a parameter for fatigue design of additive manufactured metals

    Get PDF
    Additive manufacturing (AM) is spreading in a wide range of industrial fields. The influence of the printing parameters on the mechanical performance is still an open issue among researchers, particularly when dealing with fatigue loads, which can lead to an unexpected failure. Classical fatigue tests require a large amount of time and materials to be consumed. Compared to the traditional fatigue assessment, the thermographic method (TM) is able to derive in a very rapid way the SN curve and fatigue limit of the material monitoring its energetic release during fatigue tests. In this work, for the first time, the energetic release during fatigue test has been evaluated in specimens made of AISI 316L, obtained by SLM technique. Compared to literature data, the specimens show premature failure, even at low stress levels, with brittle fracture surfaces. The internal microstructure seems to be strictly related to the energetic release of the material

    Fatigue characterization of mechanical components in service

    Get PDF
    The quickly identify of fatigue limit of a mechanical component with good approximation is currently a significant practical problem not yet resolved in a satisfactory way. Generally, for a mechanical component, the fatigue strength reduction factor ( ? i) is difficult to evaluate especially when it is in service. In this paper, the procedures for crack paths individuation and consequently damage evaluation (adopted in laboratory for stressed specimens with planned load histories) are applied to mechanical components, already failed during service. The energy parameters, proposed by the authors for the evaluation of the fatigue behavior of the materials [1-5], are defined on specimens derived from a flange bolts. The flange connecting pipes at high temperature and pressure. Due to the loss of the seal, the bolts have been subjected to a hot flow steam addition to the normal stress. The numerical analysis coupled experimental analysis (measurement of surface temperature during static and dynamic tests of specimens taken from damaged tie rods), has helped to determine the causes of failure of the tie rods. The determination of an energy parameter for the evaluation of the damage showed that factors related to the heat release of the material (loaded) may also help to understand the causes of failure of mechanical components

    fatigue assessment by energy approach during tensile and fatigue tests on ppgf35

    Get PDF
    Abstract: Today, lightweight and low cost components can be obtained with short fibre reinforced plastics. The recyclable nature of these materials by comparison to thermoset matrixes composites is also clearly appealing. This paper investigates static and fatigue behaviour for a glass-fibre-reinforced polypropylene composite. Tensile tests were carried out using DIC and IR Camera. Stress vs strain curves and temperature evolution associated to the applied tensile stress were determined. The trend of the surface temperature of the specimen during fatigue tests was analyzed

    Identification of local phenomena of plasticity in concrete under compression test

    Get PDF
    Abstract In this paper are specifically derived parameters useful to estimate the fatigue behaviour of concrete subject to uniaxial compression. For this, methodologies and experience already adopted in the study of fatigue steel and composite materials are used. These parameters are obtained by detecting the surface temperature of the specimen in the traditional static compression tests. In this way, the beginning of the crisis of the concrete for fatigue stress is linked to the loss of linearity of the temperature-test time curve (ΔT- t) and correlated to stress-test time curve (σ- t) of the tested cubic concrete specimens. In fact, the thermal analysis performed on the cubic specimen surface extended to the whole test time, shows interesting data on the crack beginning and on the subsequent evolution that after a certain number of loading cycles could determine the complete material failure. The slope variation in the interpolating curve temperature-test time allows to identify the critical points of the start fracture. This suggests a methodology to apply to civil infrastructures to evaluate in-situ, during the approval phase or during the working, critical situations. In this paper we propose a method to estimate the value of the "stress limit" (fatigue limit) of concrete material by means of an easy static uniaxial compression test according to an energetic method already proposed by Risitano

    Assessment of Damage Evolution in Sandwich Composite Material Subjected to Repeated Impacts by Means Optical Measurements

    Get PDF
    Abstract In the last decade, sandwich composite materials have had an increasing use in design of racing boats. The main reasons are: higher strength-weight ratio, low density, excellent durability and versatility. The knowledge of impact response is very important to design racing boats. The aim of the present study is the investigation of absorbing impact energy ability of a sandwich composite material used for offshore vessels in UIM (Unione Internationale Motonautique) Championship. The material analysed in this study is a sandwich manufactured with hand lay-up technique. In the first phase, the damage assessment of single impact has been studied with an optical measurement technique. In a second phase, the damage evaluation due to repeated impacts has been analysed with the similar technique

    Fatigue life prediction of high strength steel welded joints by Energy Approach

    Get PDF
    AbstractTwo full-field techniques were applied for the study of the base material and welded specimens, made of S690QL steel: digital image correlation and thermographic techniques. Static and fatigue tests were carried out. The thermographic measurements can be used to predict the fatigue, with a great saving in time and effort. Fatigue tests at increasing loads were carried out by a stepwise succession, applied to the same specimen, for applying an energy-based approach. The predictions of the fatigue life, obtained by means of the Energy Approach, were compared with the values obtained by the traditional procedure

    Theoretical Approach for Developing the Thermographic Method in Ultrasonic Fatigue

    Get PDF
    AbstractIn the last years, several approaches were developed in literature for predicting the fatigue strength of different kinds of materials. One approach is the Thermographic Method, based on the thermographic technique. This study is devoted to the development of a theoretical approach for modeling of surface and undersurface fatigue crack initiation and temperature evolution during ultrasonic fatigue test. The proposed model is based on the statistical description of mesodefect ensemble and describes an energy balance in materials (including power of energy dissipation) under cyclic loading. The model allows us to simulate the damage to fracture transition and corresponding temperature evolution in critical cross section of a sample tested in very high cyclic fatigue regime
    corecore