727 research outputs found

    On infrared divergences in spin glasses

    Full text link
    By studying the structure of infrared divergences in a toy propagator in the replica approach to the Ising spin glass below TcT_c, we suggest a possible cancellation mechanism which could decrease the degree of singularity in the loop expansion.Comment: 13 pages, Latex , revised versio

    Spontaneous versus explicit replica symmetry breaking in the theory of disordered systems

    Full text link
    We investigate the relation between spontaneous and explicit replica symmetry breaking in the theory of disordered systems. On general ground, we prove the equivalence between the replicon operator associated with the stability of the replica symmetric solution in the standard replica scheme and the operator signaling a breakdown of the solution with analytic field dependence in a scheme in which replica symmetry is explicitly broken by applied sources. This opens the possibility to study, via the recently developed functional renormalization group, unresolved questions related to spontaneous replica symmetry breaking and spin-glass behavior in finite-dimensional disordered systems.Comment: 16 page

    Two-particle renormalizations in many-fermion perturbation theory: Importance of the Ward identity

    Full text link
    We analyze two-particle renormalizations within many-fermion perturbation expansion. We show that present diagrammatic theories suffer from lack of a direct diagrammatic control over the physical two-particle functions. To rectify this we introduce and prove a Ward identity enabling an explicit construction of the self-energy from a given two-particle irreducible vertex. Approximations constructed in this way are causal, obey conservation laws and offer an explicit diagrammatic control of singularities in dynamical two-particle functions.Comment: REVTeX4, 4 pages, 2 EPS figure

    Symmetry breaking via fermion 4-point functions

    Get PDF
    We construct the effective action and gap equations for nonperturbative fermion 4-point functions. Our results apply to situations in which fermion masses can be ignored, which is the case for theories of strong flavor interactions involving standard quarks and leptons above the electroweak scale. The structure of the gap equations is different from what a naive generalization of the 2-point case would suggest, and we find for example that gauge exchanges are insufficient to generate nonperturbative 4-point functions when the number of colors is large.Comment: 36 pages, uses Revtex and eps files for figure

    On Equilibrium Dynamics of Spin-Glass Systems

    Full text link
    We present a critical analysis of the Sompolinsky theory of equilibrium dynamics. By using the spherical 2+p2+p spin glass model we test the asymptotic static limit of the Sompolinsky solution showing that it fails to yield a thermodynamically stable solution. We then present an alternative formulation, based on the Crisanti, H\"orner and Sommers [Z. f\"ur Physik {\bf 92}, 257 (1993)] dynamical solution of the spherical pp-spin spin glass model, reproducing a stable static limit that coincides, in the case of a one step Replica Symmetry Breaking Ansatz, with the solution at the dynamic free energy threshold at which the relaxing system gets stuck off-equilibrium. We formally extend our analysis to any number of Replica Symmetry Breakings RR. In the limit RR\to\infty both formulations lead to the Parisi anti-parabolic differential equation. This is the special case, though, where no dynamic blocking threshold occurs. The new formulation does not contain the additional order parameter Δ\Delta of the Sompolinsky theory.Comment: 24 pages, 6 figure

    Local excitations in mean field spin glasses

    Full text link
    We address the question of geometrical as well as energetic properties of local excitations in mean field Ising spin glasses. We study analytically the Random Energy Model and numerically a dilute mean field model, first on tree-like graphs, equivalent to a replica symmetric computation, and then directly on finite connectivity random lattices. In the first model, characterized by a discontinuous replica symmetry breaking, we found that the energy of finite volume excitation is infinite whereas in the dilute mean field model, described by a continuous replica symmetry breaking, it slowly decreases with sizes and saturates at a finite value, in contrast with what would be naively expected. The geometrical properties of these excitations are similar to those of lattice animals or branched polymers. We discuss the meaning of these results in terms of replica symmetry breaking and also possible relevance in finite dimensional systems.Comment: 7 pages, 4 figures, accepted for publicatio

    Computing minimal finite free resolutions

    Get PDF
    AbstractIn this paper we address the basic problem of computing minimal finite free resolutions of homogeneous submodules of graded free modules over polynomial rings. We develop a strategy, which keeps the resolution minimal at every step. Among the relevant benefits is a marked saving of time, as the first reported experiments in CoCoA show. The algorithm has been optimized using a variety of techniques, such as minimizing the number of critical pairs and employing an “ad hoc” Hilbert-driven strategy. The algorithm can also take advantage of various a priori pieces of information, such as the knowledge of the Castelnuovo regularity

    Statistical mechanics of the random K-SAT model

    Full text link
    The Random K-Satisfiability Problem, consisting in verifying the existence of an assignment of N Boolean variables that satisfy a set of M=alpha N random logical clauses containing K variables each, is studied using the replica symmetric framework of diluted disordered systems. We present an exact iterative scheme for the replica symmetric functional order parameter together for the different cases of interest K=2, K>= 3 and K>>1. The calculation of the number of solutions, which allowed us [Phys. Rev. Lett. 76, 3881 (1996)] to predict a first order jump at the threshold where the Boolean expressions become unsatisfiable with probability one, is thoroughly displayed. In the case K=2, the (rigorously known) critical value (alpha=1) of the number of clauses per Boolean variable is recovered while for K>=3 we show that the system exhibits a replica symmetry breaking transition. The annealed approximation is proven to be exact for large K.Comment: 34 pages + 1 table + 8 fig., submitted to Phys. Rev. E, new section added and references update

    Stability of self-consistent solutions for the Hubbard model at intermediate and strong coupling

    Full text link
    We present a general framework how to investigate stability of solutions within a single self-consistent renormalization scheme being a parquet-type extension of the Baym-Kadanoff construction of conserving approximations. To obtain a consistent description of one- and two-particle quantities, needed for the stability analysis, we impose equations of motion on the one- as well on the two-particle Green functions simultaneously and introduce approximations in their input, the completely irreducible two-particle vertex. Thereby we do not loose singularities caused by multiple two-particle scatterings. We find a complete set of stability criteria and show that each instability, singularity in a two-particle function, is connected with a symmetry-breaking order parameter, either of density type or anomalous. We explicitly study the Hubbard model at intermediate coupling and demonstrate that approximations with static vertices get unstable before a long-range order or a metal-insulator transition can be reached. We use the parquet approximation and turn it to a workable scheme with dynamical vertex corrections. We derive a qualitatively new theory with two-particle self-consistence, the complexity of which is comparable with FLEX-type approximations. We show that it is the simplest consistent and stable theory being able to describe qualitatively correctly quantum critical points and the transition from weak to strong coupling in correlated electron systems.Comment: REVTeX, 26 pages, 12 PS figure

    Sherrington-Kirkpatrick model near T=TcT=T_c: expanding around the Replica Symmetric Solution

    Full text link
    An expansion for the free energy functional of the Sherrington-Kirkpatrick (SK) model, around the Replica Symmetric SK solution Qab(RS)=δab+q(1δab)Q^{({\rm RS})}_{ab} = \delta_{ab} + q(1-\delta_{ab}) is investigated. In particular, when the expansion is truncated to fourth order in. QabQab(RS)Q_{ab} - Q^{({\rm RS})}_{ab}. The Full Replica Symmetry Broken (FRSB) solution is explicitly found but it turns out to exist only in the range of temperature 0.549...TTc=10.549...\leq T\leq T_c=1, not including T=0. On the other hand an expansion around the paramagnetic solution Qab(PM)=δabQ^{({\rm PM})}_{ab} = \delta_{ab} up to fourth order yields a FRSB solution that exists in a limited temperature range 0.915...TTc=10.915...\leq T \leq T_c=1.Comment: 18 pages, 3 figure
    corecore