244 research outputs found

    Extracting semantic entities and events from sports tweets

    Get PDF
    Large volumes of user-generated content on practically every major issue and event are being created on the microblogging site Twitter. This content can be combined and processed to detect events, entities and popular moods to feed various knowledge-intensive practical applications. On the downside, these content items are very noisy and highly informal, making it difficult to extract sense out of the stream. In this paper, we exploit various approaches to detect the named entities and significant micro-events from users’ tweets during a live sports event. Here we describe how combining linguistic features with background knowledge and the use of Twitter-specific features can achieve high, precise detection results (f-measure = 87%) in different datasets. A study was conducted on tweets from cricket matches in the ICC World Cup in order to augment the event-related non-textual media with collective intelligence

    Towards a continuous modeling of natural language domains

    Full text link
    Humans continuously adapt their style and language to a variety of domains. However, a reliable definition of `domain' has eluded researchers thus far. Additionally, the notion of discrete domains stands in contrast to the multiplicity of heterogeneous domains that humans navigate, many of which overlap. In order to better understand the change and variation of human language, we draw on research in domain adaptation and extend the notion of discrete domains to the continuous spectrum. We propose representation learning-based models that can adapt to continuous domains and detail how these can be used to investigate variation in language. To this end, we propose to use dialogue modeling as a test bed due to its proximity to language modeling and its social component.Comment: 5 pages, 3 figures, published in Uphill Battles in Language Processing workshop, EMNLP 201

    A lightweight web video model with content and context descriptions for integration with linked data

    Get PDF
    The rapid increase of video data on the Web has warranted an urgent need for effective representation, management and retrieval of web videos. Recently, many studies have been carried out for ontological representation of videos, either using domain dependent or generic schemas such as MPEG-7, MPEG-4, and COMM. In spite of their extensive coverage and sound theoretical grounding, they are yet to be widely used by users. Two main possible reasons are the complexities involved and a lack of tool support. We propose a lightweight video content model for content-context description and integration. The uniqueness of the model is that it tries to model the emerging social context to describe and interpret the video. Our approach is grounded on exploiting easily extractable evolving contextual metadata and on the availability of existing data on the Web. This enables representational homogeneity and a firm basis for information integration among semantically-enabled data sources. The model uses many existing schemas to describe various ontology classes and shows the scope of interlinking with the Linked Data cloud

    EAGLE—A Scalable Query Processing Engine for Linked Sensor Data

    Get PDF
    Recently, many approaches have been proposed to manage sensor data using semantic web technologies for effective heterogeneous data integration. However, our empirical observations revealed that these solutions primarily focused on semantic relationships and unfortunately paid less attention to spatio–temporal correlations. Most semantic approaches do not have spatio–temporal support. Some of them have attempted to provide full spatio–temporal support, but have poor performance for complex spatio–temporal aggregate queries. In addition, while the volume of sensor data is rapidly growing, the challenge of querying and managing the massive volumes of data generated by sensing devices still remains unsolved. In this article, we introduce EAGLE, a spatio–temporal query engine for querying sensor data based on the linked data model. The ultimate goal of EAGLE is to provide an elastic and scalable system which allows fast searching and analysis with respect to the relationships of space, time and semantics in sensor data. We also extend SPARQL with a set of new query operators in order to support spatio–temporal computing in the linked sensor data context.EC/H2020/732679/EU/ACTivating InnoVative IoT smart living environments for AGEing well/ACTIVAGEEC/H2020/661180/EU/A Scalable and Elastic Platform for Near-Realtime Analytics for The Graph of Everything/SMARTE

    Measuring semantic distance for linked open data-enabled recommender systems

    Get PDF
    The Linked Open Data (LOD) initiative has been quite successful in terms of publishing and interlinking data on the Web. On top of the huge amount of interconnected data, measuring relatedness between resources and identifying their relatedness could be used for various applications such as LOD-enabled recommender systems. In this paper, we propose various distance measures, on top of the basic concept of Linked Data Semantic Distance (LDSD), for calculating Linked Data semantic distance between resources that can be used in a LOD-enabled recommender system. We evaluated the distance measures in the context of a recommender system that provides the top-N recommendations with baseline methods such as LDSD. Results show that the performance is significantly improved by our proposed distance measures incorporating normalizations that use both of the resources and global appearances of paths in a graph

    Inferring user interests in microblogging social networks: a survey

    Get PDF
    With the growing popularity of microblogging services such as Twitter in recent years, an increasing number of users are using these services in their daily lives. The huge volume of information generated by users raises new opportunities in various applications and areas. Inferring user interests plays a significant role in providing personalized recommendations on microblogging services, and also on third-party applications providing social logins via these services, especially in cold-start situations. In this survey, we review user modeling strategies with respect to inferring user interests from previous studies. To this end, we focus on four dimensions of inferring user interest profiles: (1) data collection, (2) representation of user interest profiles, (3) construction and enhancement of user interest profiles, and (4) the evaluation of the constructed profiles. Through this survey, we aim to provide an overview of state-of-the-art user modeling strategies for inferring user interest profiles on microblogging social networks with respect to the four dimensions. For each dimension, we review and summarize previous studies based on specified criteria. Finally, we discuss some challenges and opportunities for future work in this research domain
    • …
    corecore