126 research outputs found

    Series expansion for L^p Hardy inequalities

    Full text link
    We consider a general class of sharp LpL^p Hardy inequalities in RN\R^N involving distance from a surface of general codimension 1kN1\leq k\leq N. We show that we can succesively improve them by adding to the right hand side a lower order term with optimal weight and best constant. This leads to an infinite series improvement of LpL^p Hardy inequalities.Comment: 16 pages, to appear in the Indiana Univ. Math.

    Stability estimates for resolvents, eigenvalues and eigenfunctions of elliptic operators on variable domains

    Full text link
    We consider general second order uniformly elliptic operators subject to homogeneous boundary conditions on open sets ϕ(Ω)\phi (\Omega) parametrized by Lipschitz homeomorphisms ϕ\phi defined on a fixed reference domain Ω\Omega. Given two open sets ϕ(Ω)\phi (\Omega), ϕ~(Ω)\tilde \phi (\Omega) we estimate the variation of resolvents, eigenvalues and eigenfunctions via the Sobolev norm ϕ~ϕW1,p(Ω)\|\tilde \phi -\phi \|_{W^{1,p}(\Omega)} for finite values of pp, under natural summability conditions on eigenfunctions and their gradients. We prove that such conditions are satisfied for a wide class of operators and open sets, including open sets with Lipschitz continuous boundaries. We apply these estimates to control the variation of the eigenvalues and eigenfunctions via the measure of the symmetric difference of the open sets. We also discuss an application to the stability of solutions to the Poisson problem.Comment: 34 pages. Minor changes in the introduction and the refercenes. Published in: Around the research of Vladimir Maz'ya II, pp23--60, Int. Math. Ser. (N.Y.), vol. 12, Springer, New York 201

    Sharp two-sided heat kernel estimates for critical Schr\"odinger operators on bounded domains

    Full text link
    On a smooth bounded domain \Omega \subset R^N we consider the Schr\"odinger operators -\Delta -V, with V being either the critical borderline potential V(x)=(N-2)^2/4 |x|^{-2} or V(x)=(1/4) dist (x,\partial\Omega)^{-2}, under Dirichlet boundary conditions. In this work we obtain sharp two-sided estimates on the corresponding heat kernels. To this end we transform the Scr\"odinger operators into suitable degenerate operators, for which we prove a new parabolic Harnack inequality up to the boundary. To derive the Harnack inequality we have established a serier of new inequalities such as improved Hardy, logarithmic Hardy Sobolev, Hardy-Moser and weighted Poincar\'e. As a byproduct of our technique we are able to answer positively to a conjecture of E.B.Davies.Comment: 40 page
    corecore