148 research outputs found
Immunotherapy as a turning point in the treatment of acute myeloid leukemia
Acute myeloid leukemia (AML) is a malignant disease of hematopoietic precursors at
the earliest stage of maturation, resulting in a clonalproliferation of myoblasts replacing normal
hematopoiesis. AML represents one of the most common types of leukemia, mostly affecting elderly
patients. To date, standard chemotherapy protocols are only effective in patients at low risk of relapse
and therapy-related mortality. The average 5-year overall survival (OS) is approximately 28%. Allogeneic hematopoietic stem cell transplantation (HSCT) improves prognosis but is limited by donor
availability, a relatively young age of patients, and absence of significant comorbidities. Moreover, it
is associated with significant morbidity and mortality. However, increasing understanding of AML
immunobiology is leading to the development of innovative therapeutic strategies. Immunotherapy
is considered an attractive strategy for controlling and eliminating the disease. It can be a real
breakthrough in the treatment of leukemia, especially in patients who are not eligible forintensive
chemotherapy. In this review, we focused on the progress of immunotherapy in the field of AML by
discussing monoclonal antibodies (mAbs), immune checkpoint inhibitors, chimeric antigen receptor
T cells (CAR-T cells), and vaccine therapeutic choices
Recommended from our members
P16. Differential susceptibility of human and mouse NK cells to malignant cell-induced abnormalities in autologous combinations: a potential mechanism for the NK cell-based immunotherapy efficacy
CD16-158-valine chimeric receptor T cells overcome the resistance of KRAS-mutated colorectal carcinoma cells to cetuximab
KRAS mutations hinder therapeutic efficacy of epidermal growth factor receptor (EGFR)-specific monoclonal antibodies cetuximab and panitumumab-based immunotherapy of EGFR+ cancers. Although cetuximab inhibits KRAS-mutated cancer cell growth in vitro by natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC), KRAS-mutated colorectal carcinoma (CRC) cells escape NK cell immunosurveillance in vivo. To overcome this limitation, we used cetuximab and panitumumab to redirect Fcγ chimeric receptor (CR) T cells against KRAS-mutated HCT116 colorectal cancer (CRC) cells. We compared four polymorphic Fcγ-CR constructs including CD16158F-CR, CD16158V-CR, CD32131H-CR, and CD32131R-CR transduced into T cells by retroviral vectors. Percentages of transduced T cells expressing CD32131H-CR (83.5 ± 9.5) and CD32131R-CR (77.7 ± 13.2) were significantly higher than those expressing with CD16158F-CR (30.3 ± 10.2) and CD16158V-CR (51.7 ± 13.7) (p < 0.003). CD32131R-CR T cells specifically bound soluble cetuximab and panitumumab. However, only CD16158V-CR T cells released high levels of interferon gamma (IFNγ = 1,145.5 pg/ml ±16.5 pg/ml, p < 0.001) and tumor necrosis factor alpha (TNFα = 614 pg/ml ± 21 pg/ml, p < 0.001) upon incubation with cetuximab-opsonized HCT116 cells. Moreover, only CD16158V-CR T cells combined with cetuximab killed HCT116 cells and A549 KRAS-mutated cells in vitro. CD16158V-CR T cells also effectively controlled subcutaneous growth of HCT116 cells in CB17-SCID mice in vivo. Thus, CD16158V-CR T cells combined with cetuximab represent useful reagents to develop innovative EGFR+KRAS-mutated CRC immunotherapies
In vitro elimination of epidermal growth factor receptor-overexpressing cancer cells by CD32A-chimeric receptor T cells in combination with cetuximab or panitumumab
Cetuximab and panitumumab bind the human epidermal growth factor receptor (EGFR). Although the chimeric cetuximab (IgG1) triggers antibody-dependent-cellular-cytotoxicity (ADCC) of EGFR positive target cells, panitumumab (a human IgG2) does not. The inability of panitumumab to trigger ADCC reflects the poor binding affinity of human IgG2 Fc for the FcγRIII (CD16) on natural killer (NK) cells. However, both human IgG1 and IgG2 bind the FcγRII (CD32A) to a similar extent. Our study compares the ability of T cells, engineered with a novel low-affinity CD32A131R-chimeric receptor (CR), and those engineered with the low-affinity CD16158F-CR T cells, in eliminating EGFR positive epithelial cancer cells (ECCs) in combination with cetuximab or panitumumab. After T-cell transduction, the percentage of CD32A131R-CR T cells was 74 ± 10%, whereas the percentage of CD16158F-CR T cells was 46 ± 15%. Only CD32A131R-CR T cells bound panitumumab. CD32A131R-CR T cells combined with the mAb 8.26 (anti-CD32) and CD16158F-CR T cells combined with the mAb 3g8 (anti-CD16) eliminated colorectal carcinoma (CRC), HCT116FcγR+ cells, in a reverse ADCC assay in vitro. Crosslinking of CD32A131R-CR on T cells by cetuximab or panitumumab and CD16158F-CR T cells by cetuximab induced elimination of triple negative breast cancer (TNBC) MDA-MB-468 cells, and the secretion of interferon gamma and tumor necrosis factor alpha. Neither cetuximab nor panitumumab induced Fcγ-CR T antitumor activity against Kirsten rat sarcoma (KRAS)-mutated HCT116, nonsmall-cell-lung-cancer, A549 and TNBC, MDA-MB-231 cells. The ADCC of Fcγ-CR T cells was associated with the overexpression of EGFR on ECCs. In conclusion, CD32A131R-CR T cells are efficiently redirected by cetuximab or panitumumab against breast cancer cells overexpressing EGFR
CAR-T cell. the long and winding road to solid tumors
Adoptive cell therapy of solid tumors with reprogrammed T cells can be considered the "next generation" of cancer hallmarks. CAR-T cells fail to be as effective as in liquid tumors for the inability to reach and survive in the microenvironment surrounding the neoplastic foci. The intricate net of cross-interactions occurring between tumor components, stromal and immune cells leads to an ineffective anergic status favoring the evasion from the host's defenses. Our goal is hereby to trace the road imposed by solid tumors to CAR-T cells, highlighting pitfalls and strategies to be developed and refined to possibly overcome these hurdles
Human gene-engineered calreticulin mutant stem cells recapitulate MPN hallmarks and identify targetable vulnerabilities
Calreticulin (CALR) mutations present the main oncogenic drivers in JAK2 wildtype (WT) myeloproliferative neoplasms (MPN), including essential thrombocythemia and myelofibrosis, where mutant (MUT) CALR is increasingly recognized as a suitable mutation-specific drug target. However, our current understanding of its mechanism-of-action is derived from mouse models or immortalized cell lines, where cross-species differences, ectopic over-expression and lack of disease penetrance are hampering translational research. Here, we describe the first human gene-engineered model of CALR MUT MPN using a CRISPR/Cas9 and adeno-associated viral vector-mediated knock-in strategy in primary human hematopoietic stem and progenitor cells (HSPCs) to establish a reproducible and trackable phenotype in vitro and in xenografted mice. Our humanized model recapitulates many disease hallmarks: thrombopoietin-independent megakaryopoiesis, myeloid-lineage skewing, splenomegaly, bone marrow fibrosis, and expansion of megakaryocyte-primed CD41+ progenitors. Strikingly, introduction of CALR mutations enforced early reprogramming of human HSPCs and the induction of an endoplasmic reticulum stress response. The observed compensatory upregulation of chaperones revealed novel mutation-specific vulnerabilities with preferential sensitivity of CALR mutant cells to inhibition of the BiP chaperone and the proteasome. Overall, our humanized model improves purely murine models and provides a readily usable basis for testing of novel therapeutic strategies in a human setting.Johannes Foßelteder, Gabriel Pabst, Tommaso Sconocchia, Angelika Schlacher, Lisa Auinger, Karl Kashofer, Christine Beham-Schmid, Slave Trajanoski, Claudia Waskow, Wolfgang Schöll, Heinz Sill, Armin Zebisch, Albert Wölfler, Daniel Thomas, and Andreas Reinisc
Natural humoral immune response to ribosomal P0 protein in colorectal cancer patients
Tumor associated antigens are useful in colorectal cancer (CRC) management. The ribosomal P proteins (P0, P1, P2) play an important role in protein synthesis and tumor formation. The immunogenicity of the ribosomal P0 protein in head and neck, in breast and prostate cancer patients and the overexpression of the carboxyl-terminal P0 epitope (C-22 P0) in some tumors were reported
- …