223 research outputs found
Novel phase diagram of superconductor NaxCoO2-yH2O in a 75 % relative humidity
We succeeded in synthesizing the powder samples of bilayer-hydrate sodium
cobalt oxide superconductors NaxCoO2-yH2O with Tc = 0 ~ 4.6 K by systematically
changing the keeping duration in a 75 % relative humidity atmosphere after
intercalation of water molecules. From the magnetic measurements, we found that
the one-day duration sample does not show any superconductivity down to 1.8 K,
and that the samples kept for 2 ~ 7 days show superconductivity, in which Tc
increases up to 4.6 K with increasing the duration. Tc and the superconducting
volume fraction are almost invariant between 7 days and 1month duration. The
59Co NQR spectra indicate a systematic change in the local charge distribution
on the CoO2 plane with change in duration.Comment: 4 pages, 5 figures, submitted to Journal of the Physical Society of
Japa
Correlation between Superconducting Transition Temperature and Increase of Nuclear Spin-Lattice Relaxation Rate Devided by Temperature at in the Hydrate Cobaltate NaCoOHO
We have performed Co-nuclear quadrupole resonance (NQR) studies on
NaCoOHO compounds with different Na () and hydrate
() contents. Two samples with different Na contents but nearly the same
values ( = 0.348, = 4.7 K ; = 0.339, = 4.6 K) were
investigated. The spin-lattice relaxation rate in the superconducting
(SC) and normal states is almost the same for the two samples except just above
. NQR measurements were also performed on different-hydrate-content
samples with different values, which were prepared from the same
Na-content ( = 0.348) sample. From measurements of using the
different-hydrate-content samples, it was found that a low- sample with
K has a larger residual density of states (DOS) in the SC state and
a smaller increase of just above than a high- sample with
= 4.7 K. The former behavior is consistent with that observed in
unconventional superconductors, and the latter suggests the relationship
between and the increase in DOS just above . This increase, which is
seemingly associated with the two-dimensionality of the CoO plane, is
considered to be one of the most important factors for the occurrence of
superconductivity.Comment: 5 pages, 5 figures, To be published in J. Phys. Soc. Jp
Structure and Dynamics of Superconducting NaxCoO(2) Hydrate and Its Unhydrated Analog
Neutron scattering has been used to investigate the crystal structure and
lattice dynamics of superconducting Na0.3CoO2 1.4(H/D)2O, and the parent
Na0.3CoO2 material. The structure of Na0.3CoO2 consists of alternate layers of
CoO2 and Na and is the same as the structure at higher Na concentrations. For
the superconductor, the water forms two additional layers between the Na and
CoO2, increasing the c-axis lattice parameter of the hexagonal P63/mmc space
group from 11.16 A to 19.5 A. The Na ions are found to occupy a different
configuration from the parent compound, while the water forms a structure that
replicates the structure of ice. Both types of sites are only partially
occupied. The CoO2 layer in these structures is robust, on the other hand, and
we find a strong inverse correlation between the CoO2 layer thickness and the
superconducting transition temperature (TC increases with decreasing
thickness). The phonon density-of-states for Na0.3CoO2 exhibits distinct
acoustic and optic bands, with a high-energy cutoff of ~100 meV. The lattice
dynamical scattering for the superconductor is dominated by the hydrogen modes,
with librational and bending modes that are quite similar to ice, supporting
the structural model that the water intercalates and forms ice-like layers in
the superconductor.Comment: 14 pages, 7 figures, Phys. Rev. B (in press). Minor changes + two
figures removed as requested by refere
Unconventional Superconductivity and Nearly Ferromagnetic Spin Fluctuations in NaCoOHO
Co NQR studies were performed in recently discovered superconductor
NaCoOHO to investigate physical properties in the
superconducting (SC) and normal states. Two samples from the same NaCoO
were examined, SC bilayer-hydrate sample with K and non-SC
monolayer-hydrate sample. From the measurement of nuclear-spin lattice
relaxation rate in the SC sample, it was found that the coherence peak
is absent just below and that is proportional to temperature far
below . These results, which are in qualitatively agreement with the
previous result by Fujimoto {\it et al.}, suggest strongly that unconventional
superconductivity is realized in this compound. In the normal state,
of the SC sample shows gradual increase below 100K down to , whereas
of the non-SC sample shows the Korringa behavior in this temperature
range. From the comparison between and in the SC
sample, the increase of is attributed to nearly ferromagnetic
fluctuations. These remarkable findings suggest that the SC sample possesses
nearly ferromagnetic fluctuations, which are possibly related with the
unconventional superconductivity in this compound. The implication of this
finding is discussed.Comment: 4 pages, 5 figures. submitted to J. Phys. Soc. Jp
Novel Synthesis and High Pressure Behavior of Na0.3CoO2 x 1.3 H2O and Related Phases
We have prepared powder samples of NaxCoO2 x yH2O using a new synthesis
route. Superconductivity was observed in Na0.3CoO2 x 1.3H2O between 4 and 5K as
indicated by the magnetic susceptibility. The bulk compressibilities of
Na0.3CoO2 x 1.3H2O, Na0.3CoO2 x 0.6H2O and Na0.3CoO2 were determined using a
diamond anvil cell and synchrotron powder diffraction. Chemical changes
occurring under pressure when using different pressure transmitting media are
discussed and further transport measurements are advocated.Comment: 7 pages, 4 figures, PRrapid submitte
Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction
Nanoparticles of nickel phosphide (Ni_2P) have been investigated for electrocatalytic activity and stability for the hydrogen evolution reaction (HER) in acidic solutions, under which proton exchange membrane-based electrolysis is operational. The catalytically active Ni_2P nanoparticles were hollow and faceted to expose a high density of the Ni_2P(001) surface, which has previously been predicted based on theory to be an active HER catalyst. The Ni2P nanoparticles had among the highest HER activity of any non-noble metal electrocatalyst reported to date, producing H_2(g) with nearly quantitative faradaic yield, while also affording stability in aqueous acidic media
Electrocatalytic hydrogen evolution using amorphous tungsten phosphide nanoparticles
Amorphous tungsten phosphide (WP), which has been synthesized as colloidal nanoparticles with an average diameter of 3 nm, has been identified as a new electrocatalyst for the hydrogen-evolution reaction (HER) in acidic aqueous solutions. WP/Ti electrodes produced current densities of −10 mA cm^(−2) and −20 mA cm^(−2) at overpotentials of only −120 mV and −140 mV, respectively, in 0.50 M H_2SO_4(aq)
Quasiparticle vanishing driven by geometrical frustration
We investigate the single hole dynamics in the triangular t-J model. We study
the structure of the hole spectral function, assuming the existence of a 120
magnetic Neel order. Within the self-consistent Born approximation (SCBA) there
is a strong momentum and t sign dependence of the spectra, related to the
underlying magnetic structure and the particle-hole asymmetry of the model. For
positive t, and in the strong coupling regime, we find that the low energy
quasiparticle excitations vanish outside the neighbourhood of the magnetic
Goldstone modes; while for negative t the quasiparticle excitations are always
well defined. In the latter, we also find resonances of magnetic origin whose
energies scale as (J/t)^2/3 and can be identified with string excitations. We
argue that this complex structure of the spectra is due to the subtle interplay
between magnon-assisted and free hopping mechanisms. Our predictions are
supported by an excellent agreement between the SCBA and the exact results on
finite size clusters. We conclude that the conventional quasiparticle picture
can be broken by the effect of geometrical magnetic frustration.Comment: 6 pages, 7 figures. Published versio
Deformation of Electronic Structures Due to CoO6 Distortion and Phase Diagrams of NaxCoO2.yH2O
Motivated by recently reported experimental phase diagrams, we study the
effects of CoO6 distortion on the electronic structure in NaxCoO2.yH2O. We
construct the multiband tight-binding model by employing the LDA result.
Analyzing this model, we show the deformation of band dispersions and
Fermi-surface topology as functions of CoO2-layer thickness. Considering these
results together with previous theoretical ones, we propose a possible
schematic phase diagram with three successive phases: the extended s-wave
superconductivity (SC), the magnetic order, and the spin-triplet SC phases when
the Co valence number s is +3.4. A phase diagram with only one phase of
spin-triplet SC is also proposed for the s=+3.5 case.Comment: 4 pages, 5 figure
Variational Monte Carlo Studies of Pairing Symmetry for the t-J Model on a Triangular Lattice
As a model of a novel superconductor Na_xCoO_2\cdotyH_2O, a single-band t-J
model on a triangular lattice is studied, using a variational Monte Carlo
method. We calculate the energies of various superconducting (SC) states,
changing the doping rate \delta and sign of t for small J/|t|. Symmetries of s,
d, and d+id (p+ip and f) waves are taken up as candidates for singlet (triplet)
pairing. In addition, the possibility of Nagaoka ferromagnetism and
inhomogeneous phases is considered. It is revealed that, among the SC states,
the d+id wave always has the lowest energy, which result supports previous
mean-field studies. There is no possibility of triplet pairing, although the
f-wave state becomes stable against a normal state in a special case
(\delta=0.5 and t<0). For t<0, the complete ferromagnetic state is dominant in
a wide range of \delta and J/|t|, which covers the realistic parameter region
of superconductivity.Comment: 10 pages, 13 figure
- …