395 research outputs found
Birth and decay of coherent optical phonons in femtosecond-laser-excited bismuth
The transient reflectivity of bismuth crystal excited by a 45 fs laser pulse in the near-infrared range has been recovered with an accuracy of 10-5, at initial sample temperatures ranging from 50 to 510 K, and at pump fluences from 2 mJ/ cm2 to 21 mJ/ cm2. The coherent phonon excitation and decay processes were imprinted into the time-dependent reflectivity and this allows us to uncover the temporal phonon history preceding the structural transformation of solid Bi. Analysis showed that the first coherent atomic displacement was produced by the polarization force and the electron pressure force during the laser pulse, and that manifests itself by a negative change in the reflectivity. The frequency of the subsequent reflectivity oscillations was chirped, redshifted from the initial value due to the lattice heating. The amplitude decreased gradually while electrons transferred their energy to the lattice. Heating and thermal expansion of the lattice transformed the initially coherent harmonic vibrations of atoms into strongly nonlinear chaotic motion that signifies the onset of disordering of the solid. This process was identified through measurement of the damping rate of the reflectivity oscillations and interpretation of this rate as the decay rate of an optical phonon into two acoustic phonons. The analysis of the reflectivity oscillations provides evidence that the overheated solid experiences only the onset of the solid-liquid phase transition but did not proceed into the liquid phase. General relations between the laser-exerted forces, the atomic motion, and the optical parameters were established. The proposed theory reproduces well the measured transient reflectivity across a wide range of crystal temperatures and laser excitation fluences
Femtosecond x rays from laser-plasma accelerators
Relativistic interaction of short-pulse lasers with underdense plasmas has
recently led to the emergence of a novel generation of femtosecond x-ray
sources. Based on radiation from electrons accelerated in plasma, these sources
have the common properties to be compact and to deliver collimated, incoherent
and femtosecond radiation. In this article we review, within a unified
formalism, the betatron radiation of trapped and accelerated electrons in the
so-called bubble regime, the synchrotron radiation of laser-accelerated
electrons in usual meter-scale undulators, the nonlinear Thomson scattering
from relativistic electrons oscillating in an intense laser field, and the
Thomson backscattered radiation of a laser beam by laser-accelerated electrons.
The underlying physics is presented using ideal models, the relevant parameters
are defined, and analytical expressions providing the features of the sources
are given. Numerical simulations and a summary of recent experimental results
on the different mechanisms are also presented. Each section ends with the
foreseen development of each scheme. Finally, one of the most promising
applications of laser-plasma accelerators is discussed: the realization of a
compact free-electron laser in the x-ray range of the spectrum. In the
conclusion, the relevant parameters characterizing each sources are summarized.
Considering typical laser-plasma interaction parameters obtained with currently
available lasers, examples of the source features are given. The sources are
then compared to each other in order to define their field of applications.Comment: 58 pages, 41 figure
Superadiabatic transitions in quantum molecular dynamics
We study the dynamics of a molecule’s nuclear wave function near an avoided crossing of two electronic energy levels for one nuclear degree of freedom. We derive the general form of the Schrödinger equation in the nth superadiabatic representation for all n є N. Using these results, we obtain closed formulas for the time development of the component of the wave function in an initially unoccupied energy subspace when a wave packet travels through the transition region. In the optimal superadiabatic representation, which we define, this component builds up monotonically. Finally, we give an explicit formula for the transition wave function away from the avoided crossing, which is in excellent agreement with high-precision numerical calculations
Small Atomic displacements Recorded in Bismuth by the Optical Reflectivity of Femtosecond Laser-Pulse Excitations
Subtle atomic motion in a Bi crystal excited by a 35 fs-laser pulse has been recovered from the transient reflectivity of an optical probe measured with an accuracy of 10-5. Analysis shows that a novel effect reported here-an initial negative drop in reflectivity-relates to a delicate coherent displacement of atoms by the polarization force during the pulse. We also show that reflectivity oscillations with a frequency coinciding with that of cold Bi are related to optical phonons excited by the electron temperature gradient through electron-phonon coupling
Internal-strain mediated coupling between polar Bi and magnetic Mn ions in the defect-free quadruple-perovskite BiMnMnO
By means of neutron powder diffraction, we investigated the effect of the
polar Bi ion on the magnetic ordering of the Mn ions in
BiMnMnO, the counterpart with \textit{quadruple} perovskite
structure of the \textit{simple} perovskite BiMnO. The data are consistent
with a \textit{noncentrosymmetric} spacegroup which contrasts the
\textit{centrosymmetric} one previously reported for the isovalent and
isomorphic compound LaMnMnO, which gives evidence of a
Bi-induced polarization of the lattice. At low temperature, the two
Mn sublattices of the and sites order antiferromagnetically
(AFM) in an independent manner at 25 and 55 K, similarly to the case of
LaMnMnO. However, both magnetic structures of
BiMnMnO radically differ from those of LaMnMnO.
In BiMnMnO the moments of the sites form
an anti-body AFM structure, whilst the moments \textbf{M} of the
sites result from a large and \textit{uniform} modulation along the b-axis of the moments \textbf{M} in the
-plane. The modulation is strikingly correlated with the displacements of
the Mn ions induced by the Bi ions. Our analysis unveils a strong
magnetoelastic coupling between the internal strain created by the Bi
ions and the moment of the Mn ions in the sites. This is ascribed to
the high symmetry of the oxygen sites and to the absence of oxygen defects, two
characteristics of quadruple perovskites not found in simple ones, which
prevent the release of the Bi-induced strain through distortions or
disorder. This demonstrates the possibility of a large magnetoelectric coupling
in proper ferroelectrics and suggests a novel concept of internal strain
engineering for multiferroics design.Comment: 9 pages, 7 figures, 5 table
Observation of longitudinal and transverse self-injections in laser-plasma accelerators
Laser-plasma accelerators can produce high quality electron beams, up to
giga-electronvolts in energy, from a centimeter scale device. The properties of
the electron beams and the accelerator stability are largely determined by the
injection stage of electrons into the accelerator. The simplest mechanism of
injection is self-injection, in which the wakefield is strong enough to trap
cold plasma electrons into the laser wake. The main drawback of this method is
its lack of shot-to-shot stability. Here we present experimental and numerical
results that demonstrate the existence of two different self-injection
mechanisms. Transverse self-injection is shown to lead to low stability and
poor quality electron beams, because of a strong dependence on the intensity
profile of the laser pulse. In contrast, longitudinal injection, which is
unambiguously observed for the first time, is shown to lead to much more stable
acceleration and higher quality electron beams.Comment: 7 pages, 7 figure
Karen Knorr and Georges Rousse : Works from the 5th Biennale of Sydney
Karen Knorr and Georges Rousse : Works from the 5th Biennale of Sydne
Electron localization and possible phase separation in the absence of a charge density wave in single-phase 1T-VS
We report on a systematic study of the structural, magnetic and transport
properties of high-purity 1T-VS powder samples prepared under high
pressure. The results differ notably from those previously obtained by
de-intercalating Li from LiVS. First, no Charge Density Wave (CDW) is found
by transmission electron microscopy down to 94 K. Though, \textit{ab initio}
phonon calculations unveil a latent CDW instability driven by an acoustic
phonon softening at the wave vector (0.21,0.21,0)
previously reported in de-intercalated samples. A further indication of latent
lattice instability is given by an anomalous expansion of the V-S bond distance
at low temperature. Second, infrared optical absorption and electrical
resistivity measurements give evidence of non metallic properties, consistent
with the observation of no CDW phase. On the other hand, magnetic
susceptibility and NMR data suggest the coexistence of localized moments with
metallic carriers, in agreement with \textit{ab initio} band structure
calculations. This discrepancy is reconciled by a picture of electron
localization induced by disorder or electronic correlations leading to a phase
separation of metallic and non-metallic domains in the nm scale. We conclude
that 1T-VS is at the verge of a CDW transition and suggest that residual
electronic doping in Li de-intercalated samples stabilizes a uniform CDW phase
with metallic properties.Comment: 22 pages, 10 Figures. Full resolution pictures available at
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.23512
- …