255 research outputs found
Role of commensurate and incommensurate low-energy excitations in the paramagnetic to hidden-order transition of URuSi
We report low-energy inelastic neutron scattering data of the paramagnetic
(PM) to hidden-order (HO) phase transition at in
URuSi. While confirming previous results for the HO and PM phases, our
data reveal a pronounced wavevector dependence of low-energy excitations across
the phase transition. To analyze the energy scans we employ a damped harmonic
oscillator model containing a fit parameter which is expected to
diverge at a second-order phase transition. Counter to expectations the
excitations at show an abrupt step-like suppression of
below , whereas excitations at , associated
with large-moment antiferromagnetism (LMAF) under pressure, show an enhancement
and a pronounced peak of at . Therefore, at the critical HO
temperature , LMAF fluctuations become nearly critical as well. This is
the behavior expected of a super-vector order parameter with nearly degenerate
components for the HO and LMAF leading to nearly isotropic fluctuations in the
combined order-parameter space.Comment: 6 pages; v3 accepted journal version; minor modifications compared to
v
Financial diversification before modern portfolio theory: UK financial advice documents in the late nineteenth and the beginning of the twentieth century
The paper offers textual evidence from a series of financial advice documents in the late nineteenth century and the early twentieth century of how UK investors perceived of and managed risk. In the world’s largest financial centre of the time, UK investors were familiar with the concept of correlation and financial advisers’ suggestions were consistent with the recommendations of modern portfolio theory in relation to portfolio selection strategies. From the 1870s, there was an increased awareness of the benefits of financial diversification - primarily putting equal amounts into a number of different securities - with much of the emphasis being on geographical rather than sectoral diversification and some discussion of avoiding highly correlated investments. Investors in the past were not so naïve as mainstream financial discussions suggest today
Superconductivity in Ce- and U-based "122" heavy-fermion compounds
This review discusses the heavy-fermion superconductivity in Ce- and U-based
compounds crystallizing in the body-centered tetragonal ThCr2Si2 structure.
Special attention will be paid to the theoretical background of these systems
which are located close to a magnetic instability.Comment: 12 pages, 9 figures. Invited topical review (special issue on "Recent
Developments in Superconductivity") Metadata and references update
Renormalization Group Approach to the Coulomb Pseudopotential for C_{60}
A numerical renormalization group technique recently developed by one of us
is used to analyse the Coulomb pseudopotential () in
for a variety of bare potentials. We find a large reduction in due to
intraball screening alone, leading to an interesting non-monotonic dependence
of on the bare interaction strength.
We find that is positive for physically reasonable bare parameters,
but small enough to make the electron-phonon coupling a viable mechanism for
superconductivity in alkali-doped fullerides. We end with some open problems.Comment: 12 pages, latex, 7 figures available from [email protected]
A Public Option for the Core
This paper is focused not on the Internet architecture – as defined by layering, the narrow waist of IP, and other core design principles – but on the Internet infrastructure, as embodied in the technologies and organizations that provide Internet service. In this paper we discuss both the challenges and the opportunities that make this an auspicious time to revisit how we might best structure the Internet’s infrastructure. Currently, the tasks of transit-between-domains and last-mile-delivery are jointly handled by a set of ISPs who interconnect through BGP. In this paper we propose cleanly separating these two tasks. For transit, we propose the creation of a “public option” for the Internet’s core backbone. This public option core, which complements rather than replaces the backbones used by large-scale ISPs, would (i) run an open market for backbone bandwidth so it could leverage links offered by third-parties, and (ii) structure its terms-of-service to enforce network neutrality so as to encourage competition and reduce the advantage of large incumbents
Midinfrared Conductivity in Orientationally Disordered Doped Fullerides
The coupling between the intramolecular vibrational modes and the doped
conduction electrons in is studied by a calculation of the
electronic contributions to the phonon self energies. The calculations are
carried out for an orientationally ordered reference solid with symmetry and for a model with quenched orientational disorder on the
fullerene sites. In both cases, the dispersion and symmetry of the renormalized
modes is governed by the electronic contributions. The current current
correlation functions and frequency dependent conductivity through the
midinfrared are calculated for both models. In the disordered structures, the
renormalized modes derived from even parity intramolecular phonons are resonant
with the dipole excited single particle spectrum, and modulate the predicted
midinfrared conductivity. The spectra for this coupled system are calculated
for several recently proposed microscopic models for the electron phonon
coupling, and a comparison is made with recent experimental data which
demonstrate this effect.Comment: 32 pages + 9 postscript figures (on request), REVTeX 3.
Theory of Superconducting of doped fullerenes
We develop the nonadiabatic polaron theory of superconductivity of
taking into account the polaron band narrowing and realistic
electron-phonon and Coulomb interactions. We argue that the crossover from the
BCS weak-coupling superconductivity to the strong-coupling polaronic and
bipolaronic superconductivity occurs at the BCS coupling constant independent of the adiabatic ratio, and there is nothing ``beyond'' Migdal's
theorem except small polarons for any realistic electron-phonon interaction. By
the use of the polaronic-type function and the ``exact'' diagonalization in the
truncated Hilbert space of vibrons (``phonons'') we calculate the ground state
energy and the electron spectral density of the molecule. This
allows us to describe the photoemission spectrum of in a wide
energy region and determine the electron-phonon interaction. The strongest
coupling is found with the high-frequency pinch mode and with the
Frenkel exciton. We clarify the crucial role of high-frequency bosonic
excitations in doped fullerenes which reduce the bare bandwidth and the Coulomb
repulsion allowing the intermediate and low-frequency phonons to couple two
small polarons in a Cooper pair. The Eliashberg-type equations are solved for
low-frequency phonons. The value of the superconducting , its pressure
dependence and the isotope effect are found to be in a remarkable agreement
with the available experimental data.Comment: 20 pages, Latex, 4 figures available upon reques
Superconductivity in Fullerides
Experimental studies of superconductivity properties of fullerides are
briefly reviewed. Theoretical calculations of the electron-phonon coupling, in
particular for the intramolecular phonons, are discussed extensively. The
calculations are compared with coupling constants deduced from a number of
different experimental techniques. It is discussed why the A_3 C_60 are not
Mott-Hubbard insulators, in spite of the large Coulomb interaction. Estimates
of the Coulomb pseudopotential , describing the effect of the Coulomb
repulsion on the superconductivity, as well as possible electronic mechanisms
for the superconductivity are reviewed. The calculation of various properties
within the Migdal-Eliashberg theory and attempts to go beyond this theory are
described.Comment: 33 pages, latex2e, revtex using rmp style, 15 figures, submitted to
Review of Modern Physics, more information at
http://radix2.mpi-stuttgart.mpg.de/fullerene/fullerene.htm
On the Valuation of Fader and Discrete Barrier Options in Heston's Stochastic Volatility Model
We focus on closed-form option pricing in Heston's stochastic volatility model, in which closed-form formulas exist only for few option types. Most of these closed-form solutions are constructed from characteristic functions. We follow this approach and derive multivariate characteristic functions depending on at least two spot values for different points in time. The derived characteristic functions are used as building blocks to set up (semi-) analytical pricing formulas for exotic options with payoffs depending on finitely many spot values such as fader options and discretely monitored barrier options. We compare our result with different numerical methods and examine accuracy and computational times
Sleep deprivation increases oleoylethanolamide in human cerebrospinal fluid
This study investigated the role of two fatty acid ethanolamides, the endogenous cannabinoid anandamide and its structural analog oleoylethanolamide in sleep deprivation of human volunteers. Serum and cerebrospinal fluid (CSF) samples were obtained from 20 healthy volunteers before and after a night of sleep deprivation with an interval of about 12 months. We found increased levels of oleoylethanolamide in CSF (P = 0.011) but not in serum (P = 0.068) after 24 h of sleep deprivation. Oleoylethanolamide is an endogenous lipid messenger that is released after neural injury and activates peroxisome proliferator-activated receptor-α (PPAR-α) with nanomolar potency. Exogenous PPAR-α agonists, such as hypolipidemic fibrates and oleoylethanolamide, exert both neuroprotective and neurotrophic effects. Thus, our results suggest that oleoylethanolamide release may represent an endogenous neuroprotective signal during sleep deprivation
- …